I have a xarray dataset with irregular spaced latitude and longitudes coordinates. My goal is to find the value of a variable at the point nearest a certain lat/lon.
Since the x
and y
dimensions are not the lat/lon values, it doesn't seem that the ds.sel()
method can be used by itself in this case. Is there a xarray-centric method to locate the point nearest a desired lat/lon by referencing the multi-dimensional lat/lon dimensions? For example, I want to pluck out the SPEED value nearest lat=21.2
and lon=-122.68
.
Below is an example dataset...
lats = np.array([[21.138 , 21.14499, 21.15197, 21.15894, 21.16591],
[21.16287, 21.16986, 21.17684, 21.18382, 21.19079],
[21.18775, 21.19474, 21.20172, 21.2087 , 21.21568],
[21.21262, 21.21962, 21.22661, 21.23359, 21.24056],
[21.2375 , 21.2445 , 21.25149, 21.25848, 21.26545]])
lons = np.array([[-122.72 , -122.69333, -122.66666, -122.63999, -122.61331],
[-122.7275 , -122.70082, -122.67415, -122.64746, -122.62078],
[-122.735 , -122.70832, -122.68163, -122.65494, -122.62825],
[-122.7425 , -122.71582, -122.68912, -122.66243, -122.63573],
[-122.75001, -122.72332, -122.69662, -122.66992, -122.64321]])
speed = np.array([[10.934007, 10.941321, 10.991583, 11.063932, 11.159435],
[10.98778 , 10.975482, 10.990983, 11.042522, 11.131154],
[11.013505, 11.001573, 10.997754, 11.03566 , 11.123781],
[11.011163, 11.000227, 11.010223, 11.049 , 11.1449 ],
[11.015698, 11.026604, 11.030653, 11.076904, 11.201464]])
ds = xarray.Dataset({'SPEED':(('x', 'y'),speed)},
coords = {'latitude': (('x', 'y'), lats),
'longitude': (('x', 'y'), lons)},
attrs={'variable':'Wind Speed'})
The value of ds
:
<xarray.Dataset>
Dimensions: (x: 5, y: 5)
Coordinates:
latitude (x, y) float64 21.14 21.14 21.15 21.16 ... 21.25 21.26 21.27
longitude (x, y) float64 -122.7 -122.7 -122.7 ... -122.7 -122.7 -122.6
Dimensions without coordinates: x, y
Data variables:
SPEED (x, y) float64 10.93 10.94 10.99 11.06 ... 11.03 11.03 11.08 11.2
Attributes:
variable: Wind Speed
Again, ds.sel(latitude=21.2, longitude=-122.68)
doesn't work because latitude and longitude are not the dataset dimensions.
See Question&Answers more detail:
os