Moose's comment which points to this blog entry does the job quite nicely.
For completeness, I give an example here using nicer variable names and a looped execution on 1000 96x96 images which are in a 4D array as in the question. It is fast (1-2 seconds on my computer) and only needs NumPy.
import numpy as np
def image_histogram_equalization(image, number_bins=256):
# from http://www.janeriksolem.net/histogram-equalization-with-python-and.html
# get image histogram
image_histogram, bins = np.histogram(image.flatten(), number_bins, density=True)
cdf = image_histogram.cumsum() # cumulative distribution function
cdf = 255 * cdf / cdf[-1] # normalize
# use linear interpolation of cdf to find new pixel values
image_equalized = np.interp(image.flatten(), bins[:-1], cdf)
return image_equalized.reshape(image.shape), cdf
if __name__ == '__main__':
# generate some test data with shape 1000, 1, 96, 96
data = np.random.rand(1000, 1, 96, 96)
# loop over them
data_equalized = np.zeros(data.shape)
for i in range(data.shape[0]):
image = data[i, 0, :, :]
data_equalized[i, 0, :, :] = image_histogram_equalization(image)[0]
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…