According to this link,
[A] SAS date value is a value that represents the number of days between
January 1, 1960, and a specified date
Therefore, if we convert the numbers to Pandas Timedeltas and add them to
1960-1-1
we can recover the date:
import numpy as np
import pandas as pd
ser = pd.Series([19411.0, 19325.0, 19325.0, 19443.0, 19778.0])
ser = pd.to_timedelta(ser, unit='D') + pd.Timestamp('1960-1-1')
yields
0 2013-02-22
1 2012-11-28
2 2012-11-28
3 2013-03-26
4 2014-02-24
dtype: datetime64[ns]
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…