As @zan points out in the their answer, you can use ax.get_shared_x_axes()
to obtain a Grouper
object that contains all the linked axes, and then .remove
any axes from this Grouper. The problem is (as @WMiller points out) that the ticker is still the same for all axes.
So one will need to
- remove the axes from the grouper
- set a new Ticker with the respective new locator and formatter
Complete example
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
fig, axes = plt.subplots(3, 4, sharex='row', sharey='row', squeeze=False)
data = np.random.rand(20, 2, 10)
for ax in axes.flatten()[:-1]:
ax.plot(*np.random.randn(2,10), marker="o", ls="")
# Now remove axes[1,5] from the grouper for xaxis
axes[2,3].get_shared_x_axes().remove(axes[2,3])
# Create and assign new ticker
xticker = matplotlib.axis.Ticker()
axes[2,3].xaxis.major = xticker
# The new ticker needs new locator and formatters
xloc = matplotlib.ticker.AutoLocator()
xfmt = matplotlib.ticker.ScalarFormatter()
axes[2,3].xaxis.set_major_locator(xloc)
axes[2,3].xaxis.set_major_formatter(xfmt)
# Now plot to the "ungrouped" axes
axes[2,3].plot(np.random.randn(10)*100+100, np.linspace(-3,3,10),
marker="o", ls="", color="red")
plt.show()
Note that in the above I only changed the ticker for the x axis and also only for the major ticks. You would need to do the same for the y axis and also for minor ticks in case it's needed.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…