Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
484 views
in Technique[技术] by (71.8m points)

opencv - Cluster texture based on features extracted from Gabor

I'm trying to cluster textures based on the features extracted from Gabor bank that I've created, but the result is far from what is typically expected so here is what I'm doing >>

1-generate a filter bank (based on the Miki's answer here I'm getting both real and imaginary part so that I can later extract Magnitude feature)

void Gabor::generateFilterbank(int bankRows,int bankCols)
{
    bankCol=bankCols;
    bankRow=bankRows;
    setBankSize();

    int thetaStep=pos_th_max/bankCols;
    int lambadaStep=(pos_lm_max/bankRows) /10;

    for (int i = 1; i <= bankRows; i++)    // cols = theta  rows = lambda
        for (int j = 1; j <= bankCols; j++ )
        {
            int ks=(kernel_size-1)/2;
            Size KernalSize(ks,ks);
            double Sigma = pos_sigma;
            double Lambda = 0.5+(i*lambadaStep);
            double Theta = (j*thetaStep)*CV_PI/180;
            double psi = pos_psi;//*CV_PI/180
            double Gamma = 0;
            vector<Mat> realImag;
            realImag.push_back(getGaborKernel(KernalSize,Sigma,Theta,Lambda,Gamma,psi,CV_32F));//real
            realImag.push_back(getGaborKernelImag(KernalSize,Sigma,Theta,Lambda,Gamma,psi,CV_32F));//imag
            Kernels.push_back(realImag);
         }

}

2-process input image

void Gabor::process(Mat img)
{
    img.convertTo(img, CV_32F, 1.0/255, 0);
    for (int i=0;(unsigned)i<Kernels.size();i++)
    {
        vector<Mat > responseIR;
        for (int j=0;(unsigned)j<Kernels[i].size();j++)
        {
            Mat IR ;
            filter2D(img, IR , CV_32F,Kernels[i][j]);
            responseIR.push_back(IR );
            IR.release();
        }
        responses.push_back(responseIR);
    }
}

3- extract the feature vector from all Gabor responses

    vector<float> Gabor::getGaborFetures(ofstream &out,float name)
    {
        vector<float>fetures;
        Mat magnituder (responses.size(),responses[0][0].rows*responses[0][0].cols,CV_32FC1, Scalar(0.0));
        fetures.push_back(name);
        if (responses.size()>0)
        {
            for (int i=0;(unsigned)i<responses.size();i+=2)
            {
                vector<float> mag,rel,imag;

                mat2Vector(responses[i][0],rel);
                mat2Vector( responses[i][1],imag);
                cv::magnitude(rel,imag, mag);

                for (int j=0;j<mag.size();j++)
                {
                  magnituder.at<float>(i,j)  =mag[j];
                }
            }

            PCA pca( magnituder,Mat(),CV_PCA_DATA_AS_ROW,10);
            Mat result(pca.project( magnituder));
            magnituder.release();
            for (int i=0;i<result.rows;i++)
            {
                for(int j=0;j<result.cols;j++)
                {
                    fetures.push_back(result.at<float>(i,j));

                }
            }
            result.release();
            for (int i=0;(unsigned)i<fetures.size();i++)
                out <<fetures[i]<<",";
            out<<endl;
            return fetures;
        }

    else
    {
        cerr<<"You have to process your image first!"<<endl;
        return fetures;
    }
}

4- finally cluster extracted features with K-means

int kt=14;
Mat labTexture;
kmeans(ftTexture,kt,labTexture,TermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 10000,0.0001),10,KMEANS_RANDOM_CENTERS );

currently, I'm testing the code on this dataset I expected to cluster data set to 14 class, for example, all bricks images goes to one folder.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)
Waitting for answers

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...