In order for a K.gradients()
layer to work like that, you have to enclose it in a Lambda()
layer, because otherwise a full Keras layer is not created, and you can't chain it or train through it. So this code will work (tested):
import keras
from keras.models import *
from keras.layers import *
from keras import backend as K
import tensorflow as tf
def grad( y, x ):
return Lambda( lambda z: K.gradients( z[ 0 ], z[ 1 ] ), output_shape = [1] )( [ y, x ] )
def network( i, d ):
m = Add()( [ i, d ] )
a = Lambda(lambda x: K.log( x ) )( m )
return a
fixed_input = Input(tensor=tf.constant( [ 1.0 ] ) )
double = Input(tensor=tf.constant( [ 2.0 ] ) )
a = network( fixed_input, double )
b = grad( a, fixed_input )
c = grad( b, fixed_input )
d = grad( c, fixed_input )
e = grad( d, fixed_input )
model = Model( inputs = [ fixed_input, double ], outputs = [ a, b, c, d, e ] )
print( model.predict( x=None, steps = 1 ) )
def network
models f( x ) = log( x + 2 ) at x = 1. def grad
is where the gradient calculation is done. This code outputs:
[array([1.0986123], dtype=float32), array([0.33333334], dtype=float32), array([-0.11111112], dtype=float32), array([0.07407408], dtype=float32), array([-0.07407409], dtype=float32)]
which are the correct values for log( 3 ), ⅓, -1 / 32, 2 / 33, -6 / 34.
Reference TensorFlow code
For reference, the same code in plain TensorFlow (used for testing):
import tensorflow as tf
a = tf.constant( 1.0 )
a2 = tf.constant( 2.0 )
b = tf.log( a + a2 )
c = tf.gradients( b, a )
d = tf.gradients( c, a )
e = tf.gradients( d, a )
f = tf.gradients( e, a )
with tf.Session() as sess:
print( sess.run( [ b, c, d, e, f ] ) )
outputs the same values:
[1.0986123, [0.33333334], [-0.11111112], [0.07407408], [-0.07407409]]
Hessians
tf.hessians()
does return the second derivative, that's a shorthand for chaining two tf.gradients()
. The Keras backend doesn't have hessians
though, so you do have to chain the two K.gradients()
.
Numerical approximation
If for some reason none of the above works, then you might want to consider numerically approximating the second derivative with taking the difference over a small ε distance. This basically triples the network for each input, so this solution introduces serious efficiency considerations, besides lacking in accuracy. Anyway, the code (tested):
import keras
from keras.models import *
from keras.layers import *
from keras import backend as K
import tensorflow as tf
def network( i, d ):
m = Add()( [ i, d ] )
a = Lambda(lambda x: K.log( x ) )( m )
return a
fixed_input = Input(tensor=tf.constant( [ 1.0 ], dtype = tf.float64 ) )
double = Input(tensor=tf.constant( [ 2.0 ], dtype = tf.float64 ) )
epsilon = Input( tensor = tf.constant( [ 1e-7 ], dtype = tf.float64 ) )
eps_reciproc = Input( tensor = tf.constant( [ 1e+7 ], dtype = tf.float64 ) )
a0 = network( Subtract()( [ fixed_input, epsilon ] ), double )
a1 = network( fixed_input, double )
a2 = network( Add()( [ fixed_input, epsilon ] ), double )
d0 = Subtract()( [ a1, a0 ] )
d1 = Subtract()( [ a2, a1 ] )
dv0 = Multiply()( [ d0, eps_reciproc ] )
dv1 = Multiply()( [ d1, eps_reciproc ] )
dd0 = Multiply()( [ Subtract()( [ dv1, dv0 ] ), eps_reciproc ] )
model = Model( inputs = [ fixed_input, double, epsilon, eps_reciproc ], outputs = [ a0, dv0, dd0 ] )
print( model.predict( x=None, steps = 1 ) )
Outputs:
[array([1.09861226]), array([0.33333334]), array([-0.1110223])]
(This only gets to the second derivative.)