Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
246 views
in Technique[技术] by (71.8m points)

python - Choosing random items from a Spark GroupedData Object

I'm new to using Spark in Python and have been unable to solve this problem: After running groupBy on a pyspark.sql.dataframe.DataFrame

df = sqlsc.read.json("data.json")
df.groupBy('teamId')

how can you choose N random samples from each resulting group (grouped by teamId) without replacement?

I'm basically trying to choose N random users from each team, maybe using groupBy is wrong to start with?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Well, it is kind of wrong. GroupedData is not really designed for a data access. It just describes grouping criteria and provides aggregation methods. See my answer to Using groupBy in Spark and getting back to a DataFrame for more details.

Another problem with this idea is selecting N random samples. It is a task which is really hard to achieve in parallel without psychical grouping of data and it is not something that happens when you call groupBy on a DataFrame:

There are at least two ways to handle this:

  • convert to RDD, groupBy and perform local sampling

    import random
    
    n = 3
    
    def sample(iter, n): 
        rs = random.Random()  # We should probably use os.urandom as a seed
        return rs.sample(list(iter), n)    
    
    df = sqlContext.createDataFrame(
        [(x, y, random.random()) for x in (1, 2, 3) for y in "abcdefghi"], 
        ("teamId", "x1", "x2"))
    
    grouped = df.rdd.map(lambda row: (row.teamId, row)).groupByKey()
    
    sampled = sqlContext.createDataFrame(
        grouped.flatMap(lambda kv: sample(kv[1], n)))
    
    sampled.show()
    
    ## +------+---+-------------------+
    ## |teamId| x1|                 x2|
    ## +------+---+-------------------+
    ## |     1|  g|   0.81921738561455|
    ## |     1|  f| 0.8563875814036598|
    ## |     1|  a| 0.9010425238735935|
    ## |     2|  c| 0.3864428179837973|
    ## |     2|  g|0.06233470405822805|
    ## |     2|  d|0.37620872770129155|
    ## |     3|  f| 0.7518901502732027|
    ## |     3|  e| 0.5142305439671874|
    ## |     3|  d| 0.6250620479303716|
    ## +------+---+-------------------+
    
  • use window functions

    from pyspark.sql import Window
    from pyspark.sql.functions import col, rand, rowNumber
    
    w = Window.partitionBy(col("teamId")).orderBy(col("rnd_"))
    
    sampled = (df
        .withColumn("rnd_", rand())  # Add random numbers column
        .withColumn("rn_", rowNumber().over(w))  # Add rowNumber over windw
        .where(col("rn_") <= n)  # Take n observations
        .drop("rn_")  # drop helper columns
        .drop("rnd_"))
    
    sampled.show()
    
    ## +------+---+--------------------+
    ## |teamId| x1|                  x2|
    ## +------+---+--------------------+
    ## |     1|  f|  0.8563875814036598|
    ## |     1|  g|    0.81921738561455|
    ## |     1|  i|  0.8173912535268248|
    ## |     2|  h| 0.10862995810038856|
    ## |     2|  c|  0.3864428179837973|
    ## |     2|  a|  0.6695356657072442|
    ## |     3|  b|0.012329360826023095|
    ## |     3|  a|  0.6450777858109182|
    ## |     3|  e|  0.5142305439671874|
    ## +------+---+--------------------+
    

but I am afraid both will be rather expensive. If size of the individual groups is balanced and relatively large I would simply use DataFrame.randomSplit.

If number of groups is relatively small it is possible to try something else:

from pyspark.sql.functions import count, udf
from pyspark.sql.types import BooleanType
from operator import truediv

counts = (df
    .groupBy(col("teamId"))
    .agg(count("*").alias("n"))
    .rdd.map(lambda r: (r.teamId, r.n))
    .collectAsMap()) 

# This defines fraction of observations from a group which should
# be taken to get n values 
counts_bd = sc.broadcast({k: truediv(n, v) for (k, v) in counts.items()})

to_take = udf(lambda k, rnd: rnd <= counts_bd.value.get(k), BooleanType())

sampled = (df
    .withColumn("rnd_", rand())
    .where(to_take(col("teamId"), col("rnd_")))
    .drop("rnd_"))

sampled.show()

## +------+---+--------------------+
## |teamId| x1|                  x2|
## +------+---+--------------------+
## |     1|  d| 0.14815204548854788|
## |     1|  f|  0.8563875814036598|
## |     1|  g|    0.81921738561455|
## |     2|  a|  0.6695356657072442|
## |     2|  d| 0.37620872770129155|
## |     2|  g| 0.06233470405822805|
## |     3|  b|0.012329360826023095|
## |     3|  h|  0.9022527556458557|
## +------+---+--------------------+

In Spark 1.5+ you can replace udf with a call to sampleBy method:

df.sampleBy("teamId", counts_bd.value)

It won't give you exact number of observations but should be good enough most of the time as long as a number of observations per group is large enough to get proper samples. You can also use sampleByKey on a RDD in a similar way.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...