There are a lot of options for read_csv which will handle all the cases you mentioned. You might want to try dtype={'A': datetime.datetime}, but often you won't need dtypes as pandas can infer the types.
For dates, then you need to specify the parse_date options:
parse_dates : boolean, list of ints or names, list of lists, or dict
keep_date_col : boolean, default False
date_parser : function
In general for converting boolean values you will need to specify:
true_values : list Values to consider as True
false_values : list Values to consider as False
Which will transform any value in the list to the boolean true/false. For more general conversions you will most likely need
converters : dict. optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels
Though dense, check here for the full list: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.parsers.read_csv.html
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…