Use is.na()
on the relevant vector of data you wish to look for and index using the negated result. For exmaple:
R> data[!is.na(data$A), ]
date A B
1 2014-01-01 2 3
2 2014-01-02 5 NA
4 2014-01-04 7 11
R> data[!is.na(data$B), ]
date A B
1 2014-01-01 2 3
4 2014-01-04 7 11
is.na()
returns TRUE
for every element that is NA
and FALSE
otherwise. To index the rows of the data frame, we can use this logical vector, but we want its converse. Hence we use !
to imply the opposite (TRUE
becomes FALSE
and vice versa).
You can restrict which columns you return by adding an index for the columns after the ,
in [ , ]
, e.g.
R> data[!is.na(data$A), 1:2]
date A
1 2014-01-01 2
2 2014-01-02 5
4 2014-01-04 7
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…