Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
518 views
in Technique[技术] by (71.8m points)

python - OpenCV Assertion failed: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S)

I have found the following code on this website:

import os
import os.path
import cv2
import glob
import imutils
CAPTCHA_IMAGE_FOLDER = "generated_captcha_images"
OUTPUT_FOLDER = "extracted_letter_images"


# Get a list of all the captcha images we need to process
captcha_image_files = glob.glob(os.path.join(CAPTCHA_IMAGE_FOLDER, "*"))
counts = {}

# loop over the image paths
for (i, captcha_image_file) in enumerate(captcha_image_files):
    print("[INFO] processing image {}/{}".format(i + 1, len(captcha_image_files)))

    # Since the filename contains the captcha text (i.e. "2A2X.png" has the text "2A2X"),
    # grab the base filename as the text
    filename = os.path.basename(captcha_image_file)
    captcha_correct_text = os.path.splitext(filename)[0]

    # Load the image and convert it to grayscale
    image = cv2.imread(captcha_image_file)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Add some extra padding around the image
    gray = cv2.copyMakeBorder(gray, 8, 8, 8, 8, cv2.BORDER_REPLICATE)

    # threshold the image (convert it to pure black and white)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

    # find the contours (continuous blobs of pixels) the image
    contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Hack for compatibility with different OpenCV versions
    contours = contours[0] if imutils.is_cv2() else contours[1]

    letter_image_regions = []

    # Now we can loop through each of the four contours and extract the letter
    # inside of each one
    for contour in contours:
        # Get the rectangle that contains the contour
        (x, y, w, h) = cv2.boundingRect(contour)

        # Compare the width and height of the contour to detect letters that
        # are conjoined into one chunk
        if w / h > 1.25:
            # This contour is too wide to be a single letter!
            # Split it in half into two letter regions!
            half_width = int(w / 2)
            letter_image_regions.append((x, y, half_width, h))
            letter_image_regions.append((x + half_width, y, half_width, h))
        else:
            # This is a normal letter by itself
            letter_image_regions.append((x, y, w, h))

    # If we found more or less than 4 letters in the captcha, our letter extraction
    # didn't work correcly. Skip the image instead of saving bad training data!
    if len(letter_image_regions) != 4:
        continue

    # Sort the detected letter images based on the x coordinate to make sure
    # we are processing them from left-to-right so we match the right image
    # with the right letter
    letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])

    # Save out each letter as a single image
    for letter_bounding_box, letter_text in zip(letter_image_regions, captcha_correct_text):
        # Grab the coordinates of the letter in the image
        x, y, w, h = letter_bounding_box

        # Extract the letter from the original image with a 2-pixel margin around the edge
        letter_image = gray[y - 2:y + h + 2, x - 2:x + w + 2]

        # Get the folder to save the image in
        save_path = os.path.join(OUTPUT_FOLDER, letter_text)

        # if the output directory does not exist, create it
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        # write the letter image to a file
        count = counts.get(letter_text, 1)
        p = os.path.join(save_path, "{}.png".format(str(count).zfill(6)))
        cv2.imwrite(p, letter_image)

        # increment the count for the current key
        counts[letter_text] = count + 1

When I try to run the code I get the following error:

[INFO] processing image 1/9955
Traceback (most recent call last):
  File "extract_single_letters_from_captchas.py", line 47, in <module>
    (x, y, w, h) = cv2.boundingRect(contour)
cv2.error: OpenCV(4.0.0) /Users/travis/build/skvark/opencv-python/opencv/modules/imgproc/src/shapedescr.cpp:741: error: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function 'pointSetBoundingRect'

I've tried searching for a solution on StackOverflow, but I didn't find anything remotely similar.


EDIT (see comments):

  • type(contour[0]) = <class 'numpy.ndarray'>

  • len(contour) = 4

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This is doing the wrong thing:

contours = contours[0] if imutils.is_cv2() else contours[1]

imutils.is_cv2() is returning False even though it should return True. If you don't mind to remove this dependency, change to:

contours = contours[0]

I found out the reason. Probably, the tutorial you are following was published before OpenCV 4 was released. OpenCV 3 changed cv2.findContours(...) to return image, contours, hierarchy, while OpenCV 2's cv2.findContours(...) and OpenCV 4's cv2.findContours(...) return contours, hierarchy. Therefore, before OpenCV 4, it was correct to say that if you use OpenCV 2 it should be contours[0] else contours[1]. If you still want to have this "compatibility", you can change to:

contours = contours[1] if imutils.is_cv3() else contours[0]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...