You should check R..'s answer and his resource again. The question that he responded to was how to find the log2 for powers of two.
The bit twiddling website says that the simple multiplication + shift only works "If you know that v is a power of 2". Otherwise you need to round up to the next power of two first:
static readonly int[] bitPatternToLog2 = new int[64] {
0, // change to 1 if you want bitSize(0) = 1
1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
}; // table taken from http://chessprogramming.wikispaces.com/De+Bruijn+Sequence+Generator
static readonly ulong multiplicator = 0x022fdd63cc95386dUL;
public static int bitSize(ulong v) {
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
// at this point you could also use popcount to find the number of set bits.
// That might well be faster than a lookup table because you prevent a
// potential cache miss
if (v == (ulong)-1) return 64;
v++;
return MultiplyDeBruijnBitPosition2[(ulong)(v * multiplicator) >> 58];
}
Here is a version with a larger lookup table that avoids the branch and one addition. I found the magic number using random search.
static readonly int[] bitPatternToLog2 = new int[128] {
0, // change to 1 if you want bitSize(0) = 1
48, -1, -1, 31, -1, 15, 51, -1, 63, 5, -1, -1, -1, 19, -1,
23, 28, -1, -1, -1, 40, 36, 46, -1, 13, -1, -1, -1, 34, -1, 58,
-1, 60, 2, 43, 55, -1, -1, -1, 50, 62, 4, -1, 18, 27, -1, 39,
45, -1, -1, 33, 57, -1, 1, 54, -1, 49, -1, 17, -1, -1, 32, -1,
53, -1, 16, -1, -1, 52, -1, -1, -1, 64, 6, 7, 8, -1, 9, -1,
-1, -1, 20, 10, -1, -1, 24, -1, 29, -1, -1, 21, -1, 11, -1, -1,
41, -1, 25, 37, -1, 47, -1, 30, 14, -1, -1, -1, -1, 22, -1, -1,
35, 12, -1, -1, -1, 59, 42, -1, -1, 61, 3, 26, 38, 44, -1, 56
};
static readonly ulong multiplicator = 0x6c04f118e9966f6bUL;
public static int bitSize(ulong v) {
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
return bitPatternToLog2[(ulong)(v * multiplicator) >> 57];
}
You should definitely check other tricks to compute the log2 and consider using the MSR
assembly instruction if you are on x86(_64). It gives you the index of the most significant set bit, which is exactly what you need.