This is NOT MY code by here is the line, where it shows a problem:
model.fit(trainX, trainY, batch_size=2, epochs=200, verbose=2)
(As I am thinking now, it is very possible this code uses an older version of TF, because 'epochs' was written as 'nb_epoch').
The last update of the code is from: Jan 11, 2017!
I have tried everything from the internet (which is not so much), including looking inside the source code of tensorflow/keras for some hints. Just to make it clear that I don't have a variable, called 'batch_index' inside the code.
So far I have looked inside different versions of TF (tensorflow/tensorflow/python/keras/engine/training_arrays.py). It appears that all are from 2018 copyright, but some start with the function fit_loop, and other with model_iteration (which is probably an update of fit_loop).
So, this 'batch_index' variable can be seen only in the first function.
I wonder if I am going in the right direction at all??!
There is no point in showing the code, because, as I explained, there is no such variable in the first place inside the code.
but, here is some code of the function 'stock_prediction', that gives the error:
def stock_prediction():
# Collect data points from csv
dataset = []
with open(FILE_NAME) as f:
for n, line in enumerate(f):
if n != 0:
dataset.append(float(line.split(',')[1]))
dataset = np.array(dataset)
# Create dataset matrix (X=t and Y=t+1)
def create_dataset(dataset):
dataX = [dataset[n+1] for n in range(len(dataset)-2)]
return np.array(dataX), dataset[2:]
trainX, trainY = create_dataset(dataset)
# Create and fit Multilinear Perceptron model
model = Sequential()
model.add(Dense(8, input_dim=1, activation='relu'))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, nb_epoch=200, batch_size=2, verbose=2)
# Our prediction for tomorrow
prediction = model.predict(np.array([dataset[0]]))
result = 'The price will move from %s to %s' % (dataset[0], prediction[0][0])
return result
---------------------------------------------------------------------------
UnboundLocalError Traceback (most recent call last)
<ipython-input-19-3dde95909d6e> in <module>
14
15 # We have our file so we create the neural net and get the prediction
---> 16 print(stock_prediction())
17
18 # We are done so we delete the csv file
<ipython-input-18-8bbf4f61c738> in stock_prediction()
23 model.add(Dense(1))
24 model.compile(loss='mean_squared_error', optimizer='adam')
---> 25 model.fit(trainX, trainY, batch_size=1, epochs=200, verbose=2)
26
27 # Our prediction for tomorrow
~Anaconda3libsite-packageskerasengineraining.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
1176 steps_per_epoch=steps_per_epoch,
1177 validation_steps=validation_steps,
-> 1178 validation_freq=validation_freq)
1179
1180 def evaluate(self,
~Anaconda3libsite-packageskerasengineraining_arrays.py in fit_loop(model, fit_function, fit_inputs, out_labels, batch_size, epochs, verbose, callbacks, val_function, val_inputs, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps, validation_freq)
211 break
212
--> 213 if batch_index == len(batches) - 1: # Last batch.
214 if do_validation and should_run_validation(validation_freq, epoch):
215 val_outs = test_loop(model, val_function, val_inputs,
UnboundLocalError: local variable 'batch_index' referenced before assignment
A little clarification:
I tried to see my version of tf/keras and here is it:
from tensorflow.python import keras
print(keras.__version__)
import keras
print(keras.__version__)
import tensorflow
print(tensorflow.__version__)
2.2.4-tf
2.2.5
1.14.0
Why keras shows different versions??
See Question&Answers more detail:
os