I believe you're looking for this
https://blogs.msdn.microsoft.com/cesardelatorre/2017/11/18/implementing-background-tasks-in-microservices-with-ihostedservice-and-the-backgroundservice-class-net-core-2-x/
And i did a 2 hour self-proclaimed-award-winning hackathon against myself to learn abit of that.
https://github.com/nixxholas/nautilus
You can refer the injections here and implement the abstracts from there too.
Many MVC projects are not really required to operate persistent background tasks. This is why you don't see them baked into a fresh new project via the template. It's better to provide developers an interface to tap on and go ahead with it.
Also, with regards to opening that socket connection for such background tasks, I have yet to establish a solution for that. As far as I know/did, I was only able to broadcast payload to clients that are connected to my own socketmanager so you'll have to look elsewhere for that. I'll definitely beep if there is anything regarding websockets in an IHostedService.
Ok anyway here's what happens.
Put this somewhere in your project, its more of an interface for you to overload with to create your own task
/// Copyright(c) .NET Foundation.Licensed under the Apache License, Version 2.0.
/// <summary>
/// Base class for implementing a long running <see cref="IHostedService"/>.
/// </summary>
public abstract class BackgroundService : IHostedService, IDisposable
{
protected readonly IServiceScopeFactory _scopeFactory;
private Task _executingTask;
private readonly CancellationTokenSource _stoppingCts =
new CancellationTokenSource();
public BackgroundService(IServiceScopeFactory scopeFactory) {
_scopeFactory = scopeFactory;
}
protected abstract Task ExecuteAsync(CancellationToken stoppingToken);
public virtual Task StartAsync(CancellationToken cancellationToken)
{
// Store the task we're executing
_executingTask = ExecuteAsync(_stoppingCts.Token);
// If the task is completed then return it,
// this will bubble cancellation and failure to the caller
if (_executingTask.IsCompleted)
{
return _executingTask;
}
// Otherwise it's running
return Task.CompletedTask;
}
public virtual async Task StopAsync(CancellationToken cancellationToken)
{
// Stop called without start
if (_executingTask == null)
{
return;
}
try
{
// Signal cancellation to the executing method
_stoppingCts.Cancel();
}
finally
{
// Wait until the task completes or the stop token triggers
await Task.WhenAny(_executingTask, Task.Delay(Timeout.Infinite,
cancellationToken));
}
}
public virtual void Dispose()
{
_stoppingCts.Cancel();
}
}
Here's how you can actually use it
public class IncomingEthTxService : BackgroundService
{
public IncomingEthTxService(IServiceScopeFactory scopeFactory) : base(scopeFactory)
{
}
protected override async Task ExecuteAsync(CancellationToken stoppingToken)
{
while (!stoppingToken.IsCancellationRequested)
{
using (var scope = _scopeFactory.CreateScope())
{
var dbContext = scope.ServiceProvider.GetRequiredService<NautilusDbContext>();
Console.WriteLine("[IncomingEthTxService] Service is Running");
// Run something
await Task.Delay(5, stoppingToken);
}
}
}
}
If you noticed, there's a bonus there. You'll have to use a servicescope in order to access db operations because its a singleton.
Inject your service in
// Background Service Dependencies
services.AddSingleton<IHostedService, IncomingEthTxService>();