The nearest-neighbour search procedure described on the Wikipedia page you linked to can certainly be generalised to other distance metrics, provided you replace "hypersphere" with the equivalent geometrical object for the given metric, and test each hyperplane for crossings with this object.
Example: if you are using the Manhattan distance instead (i.e. the sum of the absolute values of all differences in vector components), your hypersphere would become a (multidimensional) diamond. (This is easiest to visualise in 2D -- if your current nearest neighbour is at distance x from the query point p, then any closer neighbour behind a different hyperplane must intersect a diamond shape that has width and height 2x and is centred on p). This might make the hyperplane-crossing test more difficult to code or slower to run, however the general principle still applies.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…