Your pane is defined by a normal vector
n=(xn,yn,zn)
For coordination transformation we need 2 base vectors and a zero point for the pane
Base vectors
We chose those "naturally" fitting to the x/y pane (see later for edge case):
b1=(1,0,zb1)
b2=(0,1,zb2)
And we want
b1 x b2 = n*c
(c const scalar)
to make sure these two are really bases
Now solve this:
b1 x b2= (0*zb2-zb1*1,zb1*0-1*zb2,1*1-0*0) = (zb1,zb2,1)
zb1*c=xn
zb2*c=yn
1*c=zn
c=zn,
zb2=yn/c=yn/zn
zb1=xn/c=xn/zn
b1=(1,0,yn/zn)
b2=(0,1,xn/zn)
and normalize it
bv1=(1,0,yn/zn)*sqrt(1+(yn/zn*yn/zn))
bv2=(0,1,yn/zn)*sqrt(1+(xn/zn*xn/zn))
An edge case is, when zn=0: In this case the normal vector is parallel to the x/y pane and no natural base vectors exist, ind this case you have to chose base b1 and b2 vectors by an esthetic POV and go through the same solution process or just chose bv1 and bv2.
Zero point
you spoke of no anchor point for your pane in the OQ, but it is necessary to differentiate your pane from the infinite family of parallel panes.
If your anchor point is (0,0,0) this is a perfect anchor point for the coordinate transformation and your pane has
x*xn+y*yn+z*zn=0,
(y0,y0,z0)=(0,0,0)
If not, I assume you have an anchor point of (xa,ya,za) and your pane has
x*xn+y*yn+z*zn=d
with d const scalar. A natural fit would be the point of the pane, that is defined by normal projection of the original zero point onto the pane:
P0=(x0,y0,z0)
with
(x0, y0, z0) = c * (xn,yn,zn)
Solving this against
x*xn+y*yn+z*zn=d
gives
c*xn*xn+c*yn*yn+c*zn*zn=d
and
c=d/(xn*xn+yn*yn+zn*zn)
thus
P0=(x0,y0,z0)=c*(xn,yn,zn)
is found.
Final transformation
is achieved by representing every point of your pane (i.e. those points you want to show) as
P0+x'*bv1+y'*bv2
with x' and y' being the new coordinates. Since we know P0, bv1 and bv2 this is quite trivial. If we are not on the edge case, we have zeroes in bv1.y and bv2.x further reducing the problem.
x' and y' are the new coordinates you want.