I wrote a small function to partition my dataset into training and testing sets. However, I am running into trouble when dealing with factor variables. In the model validation phase of my code, I get an error if the model was built on a dataset that doesn't have representation from each level of a factor. How can I fix this partition() function to include at least one observation from every level of a factor variable?
test.df <- data.frame(a = sample(c(0,1),100, rep = T),
b = factor(sample(letters, 100, rep = T)),
c = factor(sample(c("apple", "orange"), 100, rep = T)))
set.seed(123)
partition <- function(data, train.size = .7){
train <- data[sample(1:nrow(data), round(train.size*nrow(data)), rep= FALSE), ]
test <- data[-as.numeric(row.names(train)), ]
partitioned.data <- list(train = train, test = test)
return(partitioned.data)
}
part.data <- partition(test.df)
table(part.data$train[,'b'])
table(part.data$test[,'b'])
EDIT - New function using 'caret' package and createDataPartition():
partition <- function(data, factor=NULL, train.size = .7){
if (("package:caret" %in% search()) == FALSE){
stop("Install and Load 'caret' package")
}
if (is.null(factor)){
train.index <- createDataPartition(as.numeric(row.names(data)),
times = 1, p = train.size, list = FALSE)
train <- data[train.index, ]
test <- data[-train.index, ]
}
else{
train.index <- createDataPartition(factor,
times = 1, p = train.size, list = FALSE)
train <- data[train.index, ]
test <- data[-train.index, ]
}
partitioned.data <- list(train = train, test = test)
return(partitioned.data)
}
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…