ok, since this is homework:
this is the code:
def f2(L):
sum = 0
i = 1
while i < len(L):
sum = sum + L[i]
i = i * 2
return sum
it is obviously dependant on len(L).
So lets see for each line, what it costs:
sum = 0
i = 1
# [...]
return sum
those are obviously constant time, independant of L.
In the loop we have:
sum = sum + L[i] # time to lookup L[i] (`timelookup(L)`) plus time to add to the sum (obviously constant time)
i = i * 2 # obviously constant time
and how many times is the loop executed?
it's obvously dependant on the size of L.
Lets call that loops(L)
so we got an overall complexity of
loops(L) * (timelookup(L) + const)
Being the nice guy I am, I'll tell you that list lookup is constant in python, so it boils down to
O(loops(L))
(constant factors ignored, as big-O convention implies)
And how often do you loop, based on the len()
of L
?
(a) as often as there are items in the list (b) quadratically as often as there are items in the list?
(c) less often as there are items in the list (d) more often than (b) ?
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…