Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
181 views
in Technique[技术] by (71.8m points)

python - Tensorflow Convolution Neural Network with different sized images

I am attempting to create a deep CNN that can classify each individual pixel in an image. I am replicating architecture from the image below taken from this paper. In the paper it is mentioned that deconvolutions are used so that any size of input is possible. This can be seen in the image below.

Github Repository

enter image description here

Currently, I have hard coded my model to accept images of size 32x32x7, but I would like to accept any size of input. What changes would I need to make to my code to accept variable sized input?

 x = tf.placeholder(tf.float32, shape=[None, 32*32*7])
 y_ = tf.placeholder(tf.float32, shape=[None, 32*32*7, 3])
 ...
 DeConnv1 = tf.nn.conv3d_transpose(layer1, filter = w, output_shape = [1,32,32,7,1], strides = [1,2,2,2,1], padding = 'SAME')
 ...
 final = tf.reshape(final, [1, 32*32*7])
 W_final = weight_variable([32*32*7,32*32*7,3])
 b_final = bias_variable([32*32*7,3])
 final_conv = tf.tensordot(final, W_final, axes=[[1], [1]]) + b_final
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Dynamic placeholders

Tensorflow allows to have multiple dynamic (a.k.a. None) dimensions in placeholders. The engine won't be able to ensure correctness while the graph is built, hence the client is responsible for feeding the correct input, but it provides a lot of flexibility.

So I'm going from...

x = tf.placeholder(tf.float32, shape=[None, N*M*P])
y_ = tf.placeholder(tf.float32, shape=[None, N*M*P, 3])
...
x_image = tf.reshape(x, [-1, N, M, P, 1])

to...

# Nearly all dimensions are dynamic
x_image = tf.placeholder(tf.float32, shape=[None, None, None, None, 1])
label = tf.placeholder(tf.float32, shape=[None, None, 3])

Since you intend to reshape the input to 5D anyway, so why don't use 5D in x_image right from the start. At this point, the second dimension of label is arbitrary, but we promise tensorflow that it will match with x_image.

Dynamic shapes in deconvolution

Next, the nice thing about tf.nn.conv3d_transpose is that its output shape can be dynamic. So instead of this:

# Hard-coded output shape
DeConnv1 = tf.nn.conv3d_transpose(layer1, w, output_shape=[1,32,32,7,1], ...)

... you can do this:

# Dynamic output shape
DeConnv1 = tf.nn.conv3d_transpose(layer1, w, output_shape=tf.shape(x_image), ...)

This way the transpose convolution can be applied to any image and the result will take the shape of x_image that was actually passed in at runtime.

Note that static shape of x_image is (?, ?, ?, ?, 1).

All-Convolutional network

Final and most important piece of the puzzle is to make the whole network convolutional, and that includes your final dense layer too. Dense layer must define its dimensions statically, which forces the whole neural network fix input image dimensions.

Luckily for us, Springenberg at al describe a way to replace an FC layer with a CONV layer in "Striving for Simplicity: The All Convolutional Net" paper. I'm going to use a convolution with 3 1x1x1 filters (see also this question):

final_conv = conv3d_s1(final, weight_variable([1, 1, 1, 1, 3]))
y = tf.reshape(final_conv, [-1, 3])

If we ensure that final has the same dimensions as DeConnv1 (and others), it'll make y right the shape we want: [-1, N * M * P, 3].

Combining it all together

Your network is pretty large, but all deconvolutions basically follow the same pattern, so I've simplified my proof-of-concept code to just one deconvolution. The goal is just to show what kind of network is able to handle images of arbitrary size. Final remark: image dimensions can vary between batches, but within one batch they have to be the same.

The full code:

sess = tf.InteractiveSession()

def conv3d_dilation(tempX, tempFilter):
  return tf.layers.conv3d(tempX, filters=tempFilter, kernel_size=[3, 3, 1], strides=1, padding='SAME', dilation_rate=2)

def conv3d(tempX, tempW):
  return tf.nn.conv3d(tempX, tempW, strides=[1, 2, 2, 2, 1], padding='SAME')

def conv3d_s1(tempX, tempW):
  return tf.nn.conv3d(tempX, tempW, strides=[1, 1, 1, 1, 1], padding='SAME')

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)

def max_pool_3x3(x):
  return tf.nn.max_pool3d(x, ksize=[1, 3, 3, 3, 1], strides=[1, 2, 2, 2, 1], padding='SAME')

x_image = tf.placeholder(tf.float32, shape=[None, None, None, None, 1])
label = tf.placeholder(tf.float32, shape=[None, None, 3])

W_conv1 = weight_variable([3, 3, 1, 1, 32])
h_conv1 = conv3d(x_image, W_conv1)
# second convolution
W_conv2 = weight_variable([3, 3, 4, 32, 64])
h_conv2 = conv3d_s1(h_conv1, W_conv2)
# third convolution path 1
W_conv3_A = weight_variable([1, 1, 1, 64, 64])
h_conv3_A = conv3d_s1(h_conv2, W_conv3_A)
# third convolution path 2
W_conv3_B = weight_variable([1, 1, 1, 64, 64])
h_conv3_B = conv3d_s1(h_conv2, W_conv3_B)
# fourth convolution path 1
W_conv4_A = weight_variable([3, 3, 1, 64, 96])
h_conv4_A = conv3d_s1(h_conv3_A, W_conv4_A)
# fourth convolution path 2
W_conv4_B = weight_variable([1, 7, 1, 64, 64])
h_conv4_B = conv3d_s1(h_conv3_B, W_conv4_B)
# fifth convolution path 2
W_conv5_B = weight_variable([1, 7, 1, 64, 64])
h_conv5_B = conv3d_s1(h_conv4_B, W_conv5_B)
# sixth convolution path 2
W_conv6_B = weight_variable([3, 3, 1, 64, 96])
h_conv6_B = conv3d_s1(h_conv5_B, W_conv6_B)
# concatenation
layer1 = tf.concat([h_conv4_A, h_conv6_B], 4)
w = tf.Variable(tf.constant(1., shape=[2, 2, 4, 1, 192]))
DeConnv1 = tf.nn.conv3d_transpose(layer1, filter=w, output_shape=tf.shape(x_image), strides=[1, 2, 2, 2, 1], padding='SAME')

final = DeConnv1
final_conv = conv3d_s1(final, weight_variable([1, 1, 1, 1, 3]))
y = tf.reshape(final_conv, [-1, 3])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=label, logits=y))

print('x_image:', x_image)
print('DeConnv1:', DeConnv1)
print('final_conv:', final_conv)

def try_image(N, M, P, B=1):
  batch_x = np.random.normal(size=[B, N, M, P, 1])
  batch_y = np.ones([B, N * M * P, 3]) / 3.0

  deconv_val, final_conv_val, loss = sess.run([DeConnv1, final_conv, cross_entropy],
                                              feed_dict={x_image: batch_x, label: batch_y})
  print(deconv_val.shape)
  print(final_conv.shape)
  print(loss)
  print()

tf.global_variables_initializer().run()
try_image(32, 32, 7)
try_image(16, 16, 3)
try_image(16, 16, 3, 2)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...