hi I am building a image classifier for one-class classification in which i've used autoencoder while running this model I am getting this error (ValueError: Layer conv2d_3 was called with an input that isn't a symbolic tensor. Received type: . Full input: [(128, 128, 3)]. All inputs to the layer should be tensors.)
num_of_samples = img_data.shape[0]
labels = np.ones((num_of_samples,),dtype='int64')
labels[0:376]=0
names = ['cat']
Y = np_utils.to_categorical(labels, num_class)
input_shape=img_data[0].shape
x,y = shuffle(img_data,Y, random_state=2)
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=2)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_shape)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(input_shape, decoded)
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
autoencoder.fit(X_train, X_train,
epochs=50,
batch_size=32,
shuffle=True,
validation_data=(X_test, X_test),
callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])
See Question&Answers more detail:
os