Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
195 views
in Technique[技术] by (71.8m points)

python - Splitting a dataframe into separate CSV files

I have a fairly large csv, looking like this:

+---------+---------+
| Column1 | Column2 |
+---------+---------+
|       1 |   93644 |
|       2 |   63246 |
|       3 |   47790 |
|       3 |   39644 |
|       3 |   32585 |
|       1 |   19593 |
|       1 |   12707 |
|       2 |   53480 |
+---------+---------+

My intent is to

  1. Add a new column
  2. Insert a specific value into that column, 'NewColumnValue', on each row of the csv
  3. Sort the file based on the value in Column1
  4. Split the original CSV into new files based on the contents of 'Column1', removing the header

For example, I want to end up with multiple files that look like:

+---+-------+----------------+
| 1 | 19593 | NewColumnValue |
| 1 | 93644 | NewColumnValue |
| 1 | 12707 | NewColumnValue |
+---+-------+----------------+

+---+-------+-----------------+
| 2 | 63246 | NewColumnValue |
| 2 | 53480 | NewColumnValue |
+---+-------+-----------------+

+---+-------+-----------------+
| 3 | 47790 | NewColumnValue |
| 3 | 39644 | NewColumnValue |
| 3 | 32585 | NewColumnValue |
+---+-------+-----------------+

I have managed to do this using separate .py files:

Step1

# -*- coding: utf-8 -*-
import pandas as pd
df = pd.read_csv('source.csv')
df = df.sort_values('Column1')
df['NewColumn'] = 'NewColumnValue'
df.to_csv('ready.csv', index=False, header=False)

Step2

import csv
from itertools import groupby
for key, rows in groupby(csv.reader(open("ready.csv")),
                         lambda row: row[0]):
    with open("%s.csv" % key, "w") as output:
        for row in rows:
            output.write(",".join(row) + "
")

But I'd really like to learn how to accomplish everything in a single .py file. I tried this:

# -*- coding: utf-8 -*-
#This processes a large CSV file.  
#It will dd a new column, populate the new column with a uniform piece of data for each row, sort the CSV, and remove headers
#Then it will split the single large CSV into multiple CSVs based on the value in column 0 
import pandas as pd
import csv
from itertools import groupby
df = pd.read_csv('source.csv')
df = df.sort_values('Column1')
df['NewColumn'] = 'NewColumnValue'
for key, rows in groupby(csv.reader((df)),
                         lambda row: row[0]):
    with open("%s.csv" % key, "w") as output:
        for row in rows:
            output.write(",".join(row) + "
")

but instead of working as intended, it's giving me multiple CSVs named after each column header.

Is that happening because I removed the header row when I used separate .py files and I'm not doing it here? I'm not really certain what operation I need to do when splitting the files to remove the header.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

Why not just groupby Column1 and save each group?

df = df.sort_values('Column1').assign(NewColumn='NewColumnValue')
print(df)

   Column1  Column2       NewColumn
0        1    93644  NewColumnValue
5        1    19593  NewColumnValue
6        1    12707  NewColumnValue
1        2    63246  NewColumnValue
7        2    53480  NewColumnValue
2        3    47790  NewColumnValue
3        3    39644  NewColumnValue
4        3    32585  NewColumnValue

for i, g in df.groupby('Column1'):
    g.to_csv('{}.csv'.format(i), header=False, index_label=False)

Thanks to Unatiel for the improvement. header=False will not write headers and index_label=False will not write an index column.

This creates 3 files:

1.csv
2.csv
3.csv

Each having data corresponding to each Column1 group.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...