Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
258 views
in Technique[技术] by (71.8m points)

python - Match keywords in pandas column with another list of elements

I have a pandas dataframe as:

word_list
['nuclear','election','usa','baseball']
['football','united','thriller']
['marvels','hollywood','spiderman']
....................
....................
....................

I also have multiple number of lists with categories names,something as:-

movies=['spiderman','marvels','thriller']'

sports=['baseball','hockey','football'],

politics=['election','china','usa'] and many others categories.

All I want to match the keywords of pandas column word_list with my categories lists and assign the corresponding lists name in seperate column if keywords gets matched together and if any keywords not gets matched in any of the list then simply put as miscellaneous So, output I'm looking for as:-

word_list                                          matched_list_names
['nuclear','election','usa','baseball']            politics,sports,miscellaneous
['football','united','thriller']                   sports,movies,miscellaneous               
['marvels','spiderman','hockey']                   movies,sports

....................                               .....................
....................                               .....................
....................                               ....................

I successfully get the match keywords as:-

for i in df['word_list']:
    for j in movies:
        if i in j:
           print (i)

but this gives me the list of matched keywords. How I get the list names and add it into pandas column?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can flatten dictionary of lists first and then lookup by .get with miscellaneous for non matched values, then convert to sets for unique categories and convert to strings by join:

movies=['spiderman','marvels','thriller']
sports=['baseball','hockey','football']
politics=['election','china','usa']
d = {'movies':movies, 'sports':sports, 'politics':politics}
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}

f = lambda x: ','.join(set([d1.get(y, 'miscellaneous') for y in x]))
df['matched_list_names'] = df['word_list'].apply(f)
print (df)

                                 word_list             matched_list_names
0       [nuclear, election, usa, baseball]  politics,miscellaneous,sports
1             [football, united, thriller]    miscellaneous,sports,movies
2  [marvels, hollywood, spiderman, budget]           miscellaneous,movies

Similar solution with list comprehension:

df['matched_list_names'] = [','.join(set([d1.get(y, 'miscellaneous') for y in x])) 
                            for x in df['word_list']]

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...