With data.table
, we can specify the columns of interest in .SDcols
, loop through the .SD
with lapply
and apply the function of interest. Here, the funcion rollapply
is repeated with only change in width
parameter. So, it may be better to create a function to avoid repeating the whole arguments. Also, while applying the function (f1
), the output can be kept in a list
, later unlist
with recursive = FALSE
and assign (:=
) to columns of interest
library(data.table)
library(zoo)
nm1 <- c("B", "C")
nm2 <- paste0(nm1, "_Roll.Mean.Week")
nm3 <- paste0(nm1, "_Roll.Mean.Two.Week")
f1 <- function(x, width) rollapply(x, width = width, mean,
align = "right", fill = 0, na.rm = TRUE, partial = TRUE)
setDT(Data)[, c(nm2, nm3) := unlist(lapply(.SD, function(x)
list(f1(x, 7), f1(x, 14))), recursive = FALSE), by = A, .SDcols = nm1]
head(Data)
# A B C B_Roll.Mean.Week C_Roll.Mean.Week B_Roll.Mean.Two.Week C_Roll.Mean.Two.Week
#1: 1 1 101 1 1 101 101
#2: 2 2 102 2 2 102 102
#3: 1 3 103 2 2 102 102
#4: 2 4 104 3 3 103 103
#5: 1 5 105 3 3 103 103
#6: 2 6 106 4 4 104 104
Note that funs
is deprecated in tidyverse
and in its place, can use list(~
or just ~
Data %>%
group_by(A) %>%
mutate_at(vars(B,C), list(Roll.Mean.Week = ~f1(., 7),
Roll.Mean.Two.Week = ~ f1(., 14)))%>%
ungroup()
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…