Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
156 views
in Technique[技术] by (71.8m points)

python - Error when passing data from a Dataframe into an existing ML VectorIndexerModel

I have a Dataframe which I want to use for prediction with an existing model. I get an error when using the transform method of my model.

This is how I process the trainingdata.

forecast.printSchema()

The schema of my Dataframe:

root
 |-- PM10: double (nullable = false)
 |-- rain_3h: double (nullable = false)
 |-- is_rain: double (nullable = false)
 |-- wind_deg: double (nullable = false)
 |-- wind_speed: double (nullable = false)
 |-- humidity: double (nullable = false)
 |-- is_newYear: double (nullable = false)
 |-- season: double (nullable = false)
 |-- is_rushHour: double (nullable = false)
 |-- PM10_average: double (nullable = false)

Printing the first rows

forecast.show(5)
+----+-------+-------+--------+----------+--------+----------+------+-----------+------------+
|PM10|rain_3h|is_rain|wind_deg|wind_speed|humidity|is_newYear|season|is_rushHour|PM10_average|
+----+-------+-------+--------+----------+--------+----------+------+-----------+------------+
| 1.1|    1.0|    0.0| 15.0048|      7.27|     0.0|       0.0|   0.0|        0.0|         1.2|
| 1.1|    1.0|    0.0| 15.0048|      7.27|     0.0|       0.0|   0.0|        0.0|         1.2|
| 1.1|    1.0|    0.0| 15.0048|      7.27|     0.0|       0.0|   0.0|        0.0|         1.2|
| 1.1|    1.0|    0.0| 15.0048|      7.27|     0.0|       0.0|   0.0|        0.0|         1.2|
| 1.1|    1.0|    0.0| 15.0048|      7.27|     0.0|       0.0|   0.0|        0.0|         1.2|
+----+-------+-------+--------+----------+--------+----------+------+-----------+------------+
only showing top 5 rows

Preparing the features

assembler = VectorAssembler(
    inputCols=["rain_3h", "is_rain", "wind_deg", "wind_speed", "humidity", "is_newYear", "season", "is_rushHour", "PM10_average"],
outputCol="features")

output = assembler.transform(forecast)
output.registerTempTable("output")

features = spark.sql("SELECT features, PM10 as label FROM output")
features.printSchema()
+--------------------+-----+                                                    
|            features|label|
+--------------------+-----+
|(9,[0,2,3,8],[1.0...|  1.1|
|(9,[0,2,3,8],[1.0...|  1.1|
|(9,[0,2,3,8],[1.0...|  1.1|
|(9,[0,2,3,8],[1.0...|  1.1|
|(9,[0,2,3,8],[1.0...|  1.1|
+--------------------+-----+
only showing top 5 rows

And passing the data to the model

model = PipelineModel.load(path)

predict = model.transform(features)
predict.printSchema()
root
|-- features: vector (nullable = true)
|-- label: double (nullable = false)
|-- indexedFeatures: vector (nullable = true)
|-- prediction: double (nullable = true)

predict.show(5)

Leading into this error:

    17/09/16 19:12:25 WARN Utils: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.
Traceback (most recent call last):                                              
  File "<stdin>", line 1, in <module>
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/dataframe.py", line 287, in show
    print(self._jdf.showString(n, truncate))
  File "/usr/hdp/current/spark2-client/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py", line 1133, in __call__
  File "/usr/hdp/current/spark2-client/python/pyspark/sql/utils.py", line 63, in deco
    return f(*a, **kw)
  File "/usr/hdp/current/spark2-client/python/lib/py4j-0.10.3-src.zip/py4j/protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o235.showString.
: org.apache.spark.SparkException: Failed to execute user defined function($anonfun$11: (vector) => vector)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply5_1$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
    at org.apache.spark.sql.execution.TakeOrderedAndProjectExec$$anonfun$executeCollect$1.apply(limit.scala:132)
    at org.apache.spark.sql.execution.TakeOrderedAndProjectExec$$anonfun$executeCollect$1.apply(limit.scala:132)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)
    at 

scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:186)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
    at scala.collection.mutable.ArrayOps$ofRef.map(ArrayOps.scala:186)
    at org.apache.spark.sql.execution.TakeOrderedAndProjectExec.executeCollect(limit.scala:132)
    at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2193)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57)
    at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2546)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2192)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collect(Dataset.scala:2199)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1935)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:1934)
    at org.apache.spark.sql.Dataset.withTypedCallback(Dataset.scala:2576)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:1934)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2149)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:239)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:237)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.util.NoSuchElementException: key not found: 1.0
    at scala.collection.MapLike$class.default(MapLike.scala:228)
    at scala.collection.AbstractMap.default(Map.scala:59)
    at scala.collection.MapLike$class.apply(MapLike.scala:141)
    at scala.collection.AbstractMap.apply(Map.scala:59)
    at org.apache.spark.ml.feature.VectorIndexerModel$$anonfun$10.apply(VectorIndexer.scala:339)
    at org.apache.spark.ml.feature.VectorIndexerModel$$anonfun$10.apply(VectorIndexer.scala:317)
    at org.apache.spark.ml.feature.VectorIndexerModel$$anonfun$11.apply(VectorIndexer.scala:362)
    at org.apache.spark.ml.feature.VectorIndexerModel$$anonfun$11.apply(VectorIndexer.scala:362)
    ... 33 more
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This happens because PipelineModel includes VectorIndexerModel and features contain unseen levels in one of the columns marked as categorical. You can easily reproduce the same error as follows:

val train = Seq((1L, Vectors.dense(0.0))).toDF("id", "foo")
val test = Seq((1L, Vectors.dense(1.0))).toDF("id", "foo")

new VectorIndexer().setInputCol("foo").setOutputCol("bar")
  .fit(train).transform(test).first

As of today VectorIndexer (Spark 2.2) Spark doesn't support handling unseen levels in VectorIndexer (as it does with StringIndexer) but this functionality is planned for the future.

Edit:

In Spark 2.3 you can use handleInvalid, for example:

new VectorIndexer()
  .setInputCol("foo").setOutputCol("bar")
  .setHandleInvalid("keep")
 .fit(train).transform(test).first

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...