Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
344 views
in Technique[技术] by (71.8m points)

r - Screening (multi)collinearity in a regression model

I hope that this one is not going to be "ask-and-answer" question... here goes: (multi)collinearity refers to extremely high correlations between predictors in the regression model. How to cure them... well, sometimes you don't need to "cure" collinearity, since it doesn't affect regression model itself, but interpretation of an effect of individual predictors.

One way to spot collinearity is to put each predictor as a dependent variable, and other predictors as independent variables, determine R2, and if it's larger than .9 (or .95), we can consider predictor redundant. This is one "method"... what about other approaches? Some of them are time consuming, like excluding predictors from model and watching for b-coefficient changes - they should be noticeably different.

Of course, we must always bear in mind the specific context/goal of the analysis... Sometimes, only remedy is to repeat a research, but right now, I'm interested in various ways of screening redundant predictors when (multi)collinearity occurs in a regression model.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The kappa() function can help. Here is a simulated example:

> set.seed(42)
> x1 <- rnorm(100)
> x2 <- rnorm(100)
> x3 <- x1 + 2*x2 + rnorm(100)*0.0001    # so x3 approx a linear comb. of x1+x2
> mm12 <- model.matrix(~ x1 + x2)        # normal model, two indep. regressors
> mm123 <- model.matrix(~ x1 + x2 + x3)  # bad model with near collinearity
> kappa(mm12)                            # a 'low' kappa is good
[1] 1.166029
> kappa(mm123)                           # a 'high' kappa indicates trouble
[1] 121530.7

and we go further by making the third regressor more and more collinear:

> x4 <- x1 + 2*x2 + rnorm(100)*0.000001  # even more collinear
> mm124 <- model.matrix(~ x1 + x2 + x4)
> kappa(mm124)
[1] 13955982
> x5 <- x1 + 2*x2                        # now x5 is linear comb of x1,x2
> mm125 <- model.matrix(~ x1 + x2 + x5)
> kappa(mm125)
[1] 1.067568e+16
> 

This used approximations, see help(kappa) for details.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...