Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
846 views
in Technique[技术] by (71.8m points)

machine learning - Higher validation accuracy, than training accurracy using Tensorflow and Keras

I'm trying to use deep learning to predict income from 15 self reported attributes from a dating site.

We're getting rather odd results, where our validation data is getting better accuracy and lower loss, than our training data. And this is consistent across different sizes of hidden layers. This is our model:

for hl1 in [250, 200, 150, 100, 75, 50, 25, 15, 10, 7]:
    def baseline_model():
        model = Sequential()
        model.add(Dense(hl1, input_dim=299, kernel_initializer='normal', activation='relu', kernel_regularizer=regularizers.l1_l2(0.001)))
        model.add(Dropout(0.5, seed=seed))
        model.add(Dense(3, kernel_initializer='normal', activation='sigmoid'))

        model.compile(loss='categorical_crossentropy', optimizer='adamax', metrics=['accuracy'])
        return model

    history_logs = LossHistory()
    model = baseline_model()
    history = model.fit(X, Y, validation_split=0.3, shuffle=False, epochs=50, batch_size=10, verbose=2, callbacks=[history_logs])

And this is an example of the accuracy and losses: Accuracy with hidden layer of 250 neurons and the loss.

We've tried to remove regularization and dropout, which, as expected, ended in overfitting (training acc: ~85%). We've even tried to decrease the learning rate drastically, with similiar results.

Has anyone seen similar results?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This happens when you use Dropout, since the behaviour when training and testing are different.

When training, a percentage of the features are set to zero (50% in your case since you are using Dropout(0.5)). When testing, all features are used (and are scaled appropriately). So the model at test time is more robust - and can lead to higher testing accuracies.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...