Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
238 views
in Technique[技术] by (71.8m points)

c++ - 3d reconstruction from 2 images without info about the camera

I'm new in this field and I'm trying to model a simple scene in 3d out of 2d images and I dont have any info about cameras. I know that there are 3 options:

  • I have two images and I know the model of my camera (intrisics) that I loaded from a XML for instance loadXMLFromFile() => stereoRectify() => reprojectImageTo3D()

  • I don't have them but I can calibrate my camera => stereoCalibrate() => stereoRectify() => reprojectImageTo3D()

  • I can't calibrate the camera (it is my case, because I don't have the camera that has taken the 2 images, then I need to find pair keypoints on both images with SURF, SIFT for instance (I can use any blob detector actually), then compute descriptors of these keypoints, then match keypoints from image right and image left according to their descriptors, and then find the fundamental matrix from them. The processing is much harder and would be like this:

    1. detect keypoints (SURF, SIFT) =>
    2. extract descriptors (SURF,SIFT) =>
    3. compare and match descriptors (BruteForce, Flann based approaches) =>
    4. find fundamental mat (findFundamentalMat()) from these pairs =>
    5. stereoRectifyUncalibrated() =>
    6. reprojectImageTo3D()

I'm using the last approach and my questions are:

1) Is it right?

2) if it's ok, I have a doubt about the last step stereoRectifyUncalibrated() => reprojectImageTo3D(). The signature of reprojectImageTo3D() function is:

void reprojectImageTo3D(InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int depth=-1 )

cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true) (in my code)

Parameters:

  • disparity – Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit floating-point disparity image.
  • _3dImage – Output 3-channel floating-point image of the same size as disparity. Each element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map.
  • Q – 4x4 perspective transformation matrix that can be obtained with stereoRectify().
  • handleMissingValues – Indicates, whether the function should handle missing values (i.e. points where the disparity was not computed). If handleMissingValues=true, then pixels with the minimal disparity that corresponds to the outliers (see StereoBM::operator()) are transformed to 3D points with a very large Z value (currently set to 10000).
  • ddepth – The optional output array depth. If it is -1, the output image will have CV_32F depth. ddepth can also be set to CV_16S, CV_32S or `CV_32F'.

How can I get the Q matrix? Is possible to obtain the Q matrix with F, H1 and H2 or in another way?

3) Is there another way for obtain the xyz coordinates without calibrating the cameras?

My code is:

#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <conio.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>


using namespace cv;
using namespace std;

int main(int argc, char *argv[]){

    // Read the images
    Mat imgLeft = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
    Mat imgRight = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );

    // check
    if (!imgLeft.data || !imgRight.data)
            return 0;

    // 1] find pair keypoints on both images (SURF, SIFT):::::::::::::::::::::::::::::

    // vector of keypoints
    std::vector<cv::KeyPoint> keypointsLeft;
    std::vector<cv::KeyPoint> keypointsRight;

    // Construct the SURF feature detector object
    cv::SiftFeatureDetector sift(
            0.01, // feature threshold
            10); // threshold to reduce
                // sensitivity to lines
                // Detect the SURF features

    // Detection of the SIFT features
    sift.detect(imgLeft,keypointsLeft);
    sift.detect(imgRight,keypointsRight);

    std::cout << "Number of SURF points (1): " << keypointsLeft.size() << std::endl;
    std::cout << "Number of SURF points (2): " << keypointsRight.size() << std::endl;

    // 2] compute descriptors of these keypoints (SURF,SIFT) ::::::::::::::::::::::::::

    // Construction of the SURF descriptor extractor
    cv::SurfDescriptorExtractor surfDesc;

    // Extraction of the SURF descriptors
    cv::Mat descriptorsLeft, descriptorsRight;
    surfDesc.compute(imgLeft,keypointsLeft,descriptorsLeft);
    surfDesc.compute(imgRight,keypointsRight,descriptorsRight);

    std::cout << "descriptor matrix size: " << descriptorsLeft.rows << " by " << descriptorsLeft.cols << std::endl;

    // 3] matching keypoints from image right and image left according to their descriptors (BruteForce, Flann based approaches)

    // Construction of the matcher
    cv::BruteForceMatcher<cv::L2<float> > matcher;

    // Match the two image descriptors
    std::vector<cv::DMatch> matches;
    matcher.match(descriptorsLeft,descriptorsRight, matches);

    std::cout << "Number of matched points: " << matches.size() << std::endl;


    // 4] find the fundamental mat ::::::::::::::::::::::::::::::::::::::::::::::::::::

    // Convert 1 vector of keypoints into
    // 2 vectors of Point2f for compute F matrix
    // with cv::findFundamentalMat() function
    std::vector<int> pointIndexesLeft;
    std::vector<int> pointIndexesRight;
    for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {

         // Get the indexes of the selected matched keypoints
         pointIndexesLeft.push_back(it->queryIdx);
         pointIndexesRight.push_back(it->trainIdx);
    }

    // Convert keypoints into Point2f
    std::vector<cv::Point2f> selPointsLeft, selPointsRight;
    cv::KeyPoint::convert(keypointsLeft,selPointsLeft,pointIndexesLeft);
    cv::KeyPoint::convert(keypointsRight,selPointsRight,pointIndexesRight);

    /* check by drawing the points
    std::vector<cv::Point2f>::const_iterator it= selPointsLeft.begin();
    while (it!=selPointsLeft.end()) {

            // draw a circle at each corner location
            cv::circle(imgLeft,*it,3,cv::Scalar(255,255,255),2);
            ++it;
    }

    it= selPointsRight.begin();
    while (it!=selPointsRight.end()) {

            // draw a circle at each corner location
            cv::circle(imgRight,*it,3,cv::Scalar(255,255,255),2);
            ++it;
    } */

    // Compute F matrix from n>=8 matches
    cv::Mat fundemental= cv::findFundamentalMat(
            cv::Mat(selPointsLeft), // points in first image
            cv::Mat(selPointsRight), // points in second image
            CV_FM_RANSAC);       // 8-point method

    std::cout << "F-Matrix size= " << fundemental.rows << "," << fundemental.cols << std::endl;

    /* draw the left points corresponding epipolar lines in right image
    std::vector<cv::Vec3f> linesLeft;
    cv::computeCorrespondEpilines(
            cv::Mat(selPointsLeft), // image points
            1,                      // in image 1 (can also be 2)
            fundemental,            // F matrix
            linesLeft);             // vector of epipolar lines

    // for all epipolar lines
    for (vector<cv::Vec3f>::const_iterator it= linesLeft.begin(); it!=linesLeft.end(); ++it) {

        // draw the epipolar line between first and last column
        cv::line(imgRight,cv::Point(0,-(*it)[2]/(*it)[1]),cv::Point(imgRight.cols,-((*it)[2]+(*it)[0]*imgRight.cols)/(*it)[1]),cv::Scalar(255,255,255));
    }

    // draw the left points corresponding epipolar lines in left image
    std::vector<cv::Vec3f> linesRight;
    cv::computeCorrespondEpilines(cv::Mat(selPointsRight),2,fundemental,linesRight);
    for (vector<cv::Vec3f>::const_iterator it= linesRight.begin(); it!=linesRight.end(); ++it) {

        // draw the epipolar line between first and last column
        cv::line(imgLeft,cv::Point(0,-(*it)[2]/(*it)[1]), cv::Point(imgLeft.cols,-((*it)[2]+(*it)[0]*imgLeft.cols)/(*it)[1]), cv::Scalar(255,255,255));
    }

    // Display the images with points and epipolar lines
    cv::namedWindow("Right Image Epilines");
    cv::imshow("Right Image Epilines",imgRight);
    cv::namedWindow("Left Image Epilines");
    cv::imshow("Left Image Epilines",imgLeft);
    */

    // 5] stereoRectifyUncalibrated()::::::::::::::::::::::::::::::::::::::::::::::::::

    //H1, H2 – The output rectification homography matrices for the first and for the second images.
    cv::Mat H1(4,4, imgRight.type());
    cv::Mat H2(4,4, imgRight.type());
    cv::stereoRectifyUncalibrated(selPointsRight, selPointsLeft, fundemental, imgRight.size(), H1, H2);


    // create the image in which we will save our disparities
    Mat imgDisparity16S = Mat( imgLeft.rows, imgLeft.cols, CV_16S );
    Mat imgDisparity8U = Mat( imgLeft.rows, imgLeft.cols, CV_8UC1 );

    // Call the constructor for StereoBM
    int ndisparities = 16*5;      // < Range of disparity >
    int SADWindowSize = 5;        // < Size of the block window > Must be odd. Is the 
                                  // size of averaging window used to match pixel  
                                  // blocks(larger values mean better robustness to
                                  // noise, but yield blurry disparity maps)

    StereoBM sbm( StereoBM::BASIC_PRESET,
        ndisparities,
        SADWindowSize );

    // Calculate the disparity image
    sbm( imgLeft, imgRight, imgDisparity16S, CV_16S );

    // Check its extreme values
    double minVal; double maxVal;

    minMaxLoc( imgDisparity16S, &minVal, &maxVal );

    printf("Min disp: %f Max value: %f 
", minVal, maxVal);

    // Display it as a CV_8UC1 image
    imgDisparity16S.convertTo( imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));

    namedWindow( "windowDisparity", CV_WINDOW_NORMAL );
    imshow( "windowDisparity", imgDisparity8U );


    // 6] reprojectImageTo3D() :::::::::::::::::::::::::::::::::::::::::::::::::::::

    //Mat xyz;
    //cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true);

    //How can I get the Q matrix? Is possibile to obtain the Q matrix with 
    //F, H1 and H2 or in another way?
    //Is there another way for obtain the xyz coordinates?

    cv::waitKey();
    return 0;
}
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

StereoRectifyUncalibrated calculates simply planar perspective transformation not rectification transformation in object space. It is necessary to convert this planar transformation to object space transformation to extract Q matrice, and i think some of the camera calibration parameters are required for it( like camera intrinsics ). There may have some research topics ongoing with this subject.

You may have add some steps for estimating camera intrinsics, and extracting relative orientation of cameras to make your flow work right. I think camera calibration parameters are vital for extracting proper 3d structure of the scene, if there is no active lighting method is used.

Also bundle block adjustment based solutions are required for refining all estimated values to more accurate values.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...