There is no general way of choosing minPts. It depends on what you want to find. A low minPts means it will build more clusters from noise, so don't choose it too small.
For epsilon, there are various aspects. It again boils down to choosing whatever works on this data set and this minPts and this distance function and this normalization. You can try to do a knn distance histogram and choose a "knee" there, but there might be no visible one, or multiple.
OPTICS is a successor to DBSCAN that does not need the epsilon parameter (except for performance reasons with index support, see Wikipedia). It's much nicer, but I believe it is a pain to implement in R, because it needs advanced data structures (ideally, a data index tree for acceleration and an updatable heap for the priority queue), and R is all about matrix operations.
Naively, one can imagine OPTICS as doing all values of Epsilon at the same time, and putting the results in a cluster hierarchy.
The first thing you need to check however - pretty much independent of whatever clustering algorithm you are going to use - is to make sure you have a useful distance function and appropriate data normalization. If your distance degenerates, no clustering algorithm will work.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…