Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
295 views
in Technique[技术] by (71.8m points)

python - Add dropout layers between pretrained dense layers in keras

In keras.applications, there is a VGG16 model pre-trained on imagenet.

from keras.applications import VGG16
model = VGG16(weights='imagenet')

This model has the following structure.


Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
block1_conv1 (Convolution2D)     (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
block1_conv2 (Convolution2D)     (None, 64, 224, 224)  36928       block1_conv1[0][0]               
____________________________________________________________________________________________________
block1_pool (MaxPooling2D)       (None, 64, 112, 112)  0           block1_conv2[0][0]               
____________________________________________________________________________________________________
block2_conv1 (Convolution2D)     (None, 128, 112, 112) 73856       block1_pool[0][0]                
____________________________________________________________________________________________________
block2_conv2 (Convolution2D)     (None, 128, 112, 112) 147584      block2_conv1[0][0]               
____________________________________________________________________________________________________
block2_pool (MaxPooling2D)       (None, 128, 56, 56)   0           block2_conv2[0][0]               
____________________________________________________________________________________________________
block3_conv1 (Convolution2D)     (None, 256, 56, 56)   295168      block2_pool[0][0]                
____________________________________________________________________________________________________
block3_conv2 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv1[0][0]               
____________________________________________________________________________________________________
block3_conv3 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv2[0][0]               
____________________________________________________________________________________________________
block3_pool (MaxPooling2D)       (None, 256, 28, 28)   0           block3_conv3[0][0]               
____________________________________________________________________________________________________
block4_conv1 (Convolution2D)     (None, 512, 28, 28)   1180160     block3_pool[0][0]                
____________________________________________________________________________________________________
block4_conv2 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv1[0][0]               
____________________________________________________________________________________________________
block4_conv3 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv2[0][0]               
____________________________________________________________________________________________________
block4_pool (MaxPooling2D)       (None, 512, 14, 14)   0           block4_conv3[0][0]               
____________________________________________________________________________________________________
block5_conv1 (Convolution2D)     (None, 512, 14, 14)   2359808     block4_pool[0][0]                
____________________________________________________________________________________________________
block5_conv2 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv1[0][0]               
____________________________________________________________________________________________________
block5_conv3 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv2[0][0]               
____________________________________________________________________________________________________
block5_pool (MaxPooling2D)       (None, 512, 7, 7)     0           block5_conv3[0][0]               
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           block5_pool[0][0]                
____________________________________________________________________________________________________
fc1 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
fc2 (Dense)                      (None, 4096)          16781312    fc1[0][0]                        
____________________________________________________________________________________________________
predictions (Dense)              (None, 1000)          4097000     fc2[0][0]                        
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________

I would like to fine-tune this model with dropout layers between the dense layers (fc1, fc2 and predictions), while keeping all the pre-trained weights of the model intact. I know it's possible to access each layer individually with model.layers, but I haven't found anywhere how to add new layers between the existing layers.

What's the best practice of doing this?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I found an answer myself by using Keras functional API

from keras.applications import VGG16
from keras.layers import Dropout
from keras.models import Model

model = VGG16(weights='imagenet')

# Store the fully connected layers
fc1 = model.layers[-3]
fc2 = model.layers[-2]
predictions = model.layers[-1]

# Create the dropout layers
dropout1 = Dropout(0.85)
dropout2 = Dropout(0.85)

# Reconnect the layers
x = dropout1(fc1.output)
x = fc2(x)
x = dropout2(x)
predictors = predictions(x)

# Create a new model
model2 = Model(input=model.input, output=predictors)

model2 has the dropout layers as I wanted

____________________________________________________________________________________________________
Layer (type)                     Output Shape          Param #     Connected to                     
====================================================================================================
input_1 (InputLayer)             (None, 3, 224, 224)   0                                            
____________________________________________________________________________________________________
block1_conv1 (Convolution2D)     (None, 64, 224, 224)  1792        input_1[0][0]                    
____________________________________________________________________________________________________
block1_conv2 (Convolution2D)     (None, 64, 224, 224)  36928       block1_conv1[0][0]               
____________________________________________________________________________________________________
block1_pool (MaxPooling2D)       (None, 64, 112, 112)  0           block1_conv2[0][0]               
____________________________________________________________________________________________________
block2_conv1 (Convolution2D)     (None, 128, 112, 112) 73856       block1_pool[0][0]                
____________________________________________________________________________________________________
block2_conv2 (Convolution2D)     (None, 128, 112, 112) 147584      block2_conv1[0][0]               
____________________________________________________________________________________________________
block2_pool (MaxPooling2D)       (None, 128, 56, 56)   0           block2_conv2[0][0]               
____________________________________________________________________________________________________
block3_conv1 (Convolution2D)     (None, 256, 56, 56)   295168      block2_pool[0][0]                
____________________________________________________________________________________________________
block3_conv2 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv1[0][0]               
____________________________________________________________________________________________________
block3_conv3 (Convolution2D)     (None, 256, 56, 56)   590080      block3_conv2[0][0]               
____________________________________________________________________________________________________
block3_pool (MaxPooling2D)       (None, 256, 28, 28)   0           block3_conv3[0][0]               
____________________________________________________________________________________________________
block4_conv1 (Convolution2D)     (None, 512, 28, 28)   1180160     block3_pool[0][0]                
____________________________________________________________________________________________________
block4_conv2 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv1[0][0]               
____________________________________________________________________________________________________
block4_conv3 (Convolution2D)     (None, 512, 28, 28)   2359808     block4_conv2[0][0]               
____________________________________________________________________________________________________
block4_pool (MaxPooling2D)       (None, 512, 14, 14)   0           block4_conv3[0][0]               
____________________________________________________________________________________________________
block5_conv1 (Convolution2D)     (None, 512, 14, 14)   2359808     block4_pool[0][0]                
____________________________________________________________________________________________________
block5_conv2 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv1[0][0]               
____________________________________________________________________________________________________
block5_conv3 (Convolution2D)     (None, 512, 14, 14)   2359808     block5_conv2[0][0]               
____________________________________________________________________________________________________
block5_pool (MaxPooling2D)       (None, 512, 7, 7)     0           block5_conv3[0][0]               
____________________________________________________________________________________________________
flatten (Flatten)                (None, 25088)         0           block5_pool[0][0]                
____________________________________________________________________________________________________
fc1 (Dense)                      (None, 4096)          102764544   flatten[0][0]                    
____________________________________________________________________________________________________
dropout_1 (Dropout)              (None, 4096)          0           fc1[0][0]                        
____________________________________________________________________________________________________
fc2 (Dense)                      (None, 4096)          16781312    dropout_1[0][0]                  
____________________________________________________________________________________________________
dropout_2 (Dropout)              (None, 4096)          0           fc2[1][0]                        
____________________________________________________________________________________________________
predictions (Dense)              (None, 1000)          4097000     dropout_2[0][0]                  
====================================================================================================
Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0
____________________________________________________________________________________________________

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...