A De Bruijn sequence of order n over k symbols (and of k^n length) have a property that every possible n-length word appears as consecutive characters in it, some of them with cyclic wrapping. For example, in the case of k=2, n=2, the possible words are 00, 01, 10, 11, and a De Bruijn sequence is 0011. 00, 01, 11 appears in it, 10 with wrapping. This property naturally means that left shifting a De Bruijn sequence (multiplying with power of two) and taking its upper n bits results in a unique number for each power of two multiplier. Then you only need a lookup table to determine which one it is. It works on a similar principle to numbers which are one less than power of two, but the magic number in this case is not a De Bruijn sequence, but an analogue. The defining property simply changes to "every possible n-length word appears as the sum of the first m subsequences of length n, mod 2^n". This property is all that is needed for the algorithm to work. They simply used this different class of magic numbers to speed up the algorithm. I did as well.
One possible method of construction of De Bruijn numbers is the generation of a Hamiltonian path of the De Bruijn graph, Wikipedia provides an example of such a graph. In this case, the nodes are 2^5=32-bit integers, the directed edges are transitions between them, where a transition is a left shift and a binary or operation according to the label of the edge, 0 or 1. There might be a direct analogue to 2^n-1 type magic numbers, it might be worth exploring, but this isn't a way people usually construct such algorithms.
In practice you might try to construct it differently, especially if you want it to behave in a tad different manner. For example, the implementation of leading/trailing number of zeros algorithms on the bit twiddling hacks page can only return values in [0..31]. It needs additional checking for the case of 0, which has 32 zeros. This check requires a branching and can be way too slow on some CPUs.
The way I did it, I used a 64 element lookup table instead of 32, generated random magic numbers, and for each of them I built up a lookup table with power of two inputs, checked its correctness (injectivity), then verified it for all 32-bit numbers. I continued till I encountered a correct magic number. The resulting numbers do not fulfill a property of "every possible n-length word appears", since only 33 numbers appear, which are unique for all 33 possible input.
Exhaustive brute force search sounds slow, especially if good magic numbers are rare, but if we first test known power of two values as inputs, the table is filled quickly, rejection is fast, and the rejection rate is very high. We only need to clear the table after each magic number. In essence I exploited a high rejection rate algorithm to construct magic numbers.
The resulting algorithms are
int32 Integer::numberOfLeadingZeros (int32 x)
{
static int32 v[64] = {
32, -1, 1, 19, -1, -1, -1, 27, -1, 24, 3, -1, 29, -1, 9, -1,
12, 7, -1, 20, -1, -1, 4, 30, 10, -1, 21, -1, 5, 31, -1, -1,
-1, -1, 0, 18, 17, 16, -1, -1, 15, -1, -1, -1, 26, -1, 14, -1,
23, -1, 2, -1, -1, 28, 25, -1, -1, 13, 8, -1, -1, 11, 22, 6};
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x *= 0x749c0b5d;
return v[cast<uint32>(x) >> 26];
}
int32 Integer::numberOfTrailingZeros (int32 x)
{
static int32 v[64] = {
32, -1, 2, -1, 3, -1, -1, -1, -1, 4, -1, 17, 13, -1, -1, 7,
0, -1, -1, 5, -1, -1, 27, 18, 29, 14, 24, -1, -1, 20, 8, -1,
31, 1, -1, -1, -1, 16, 12, 6, -1, -1, -1, 26, 28, 23, 19, -1,
30, -1, 15, 11, -1, 25, 22, -1, -1, 10, -1, 21, 9, -1, -1, -1};
x &= -x;
x *= 0x4279976b;
return v[cast<uint32>(x) >> 26];
}
As for your question of how did they know, they probably didn't. They experimented, tried to change things, just like me. After all, it isn't a big stretch of imagination that 2^n-1 inputs might work instead of 2^n inputs with different magic number and lookup table.
Here, I made a simplified version of my magic number generator code. It checks all possible magic numbers in 5 minutes if we check only for power of two inputs, finding 1024 magic numbers. Checking against other inputs are pointless since they are reduced to 2^n-1 form anyway. Does not construct the table, but it is trivial once you know the magic number.
#include <Frigo/all>
#include <Frigo/all.cpp>
using namespace Frigo::Lang;
using namespace std;
class MagicNumberGenerator
{
public:
static const int32 log2n = 5;
static const int32 n = 1 << log2n;
static const bool tryZero = false;
MagicNumberGenerator () {}
void tryAllMagic ()
{
for( int32 magic = 0; magic < Integer::MAX_VALUE; magic++ ){
tryMagic(magic);
}
tryMagic(Integer::MAX_VALUE);
for( int32 magic = Integer::MIN_VALUE; magic < 0; magic++ ){
tryMagic(magic);
}
}
bool tryMagic (int32 magic)
{
// clear table
for( int32 i = 0; i < n; i++ ){
table[i] = -1;
}
// try for zero
if( tryZero and not tryInput(magic, 0) ){
return false;
}
// try for all power of two inputs, filling table quickly in the process
for( int32 i = 0; i < 32; i++ ){
if( not tryInput(magic, 1 << i) ){
return false;
}
}
// here we would test all possible 32-bit inputs except zero, but it is pointless due to the reduction to 2^n-1 form
// we found a magic number
cout << "Magic number found: 0x" << Integer::toHexString(magic) << endl;
return true;
}
bool tryInput (int32 magic, int32 x)
{
// calculate good answer
int32 leadingZeros = goodNumberOfLeadingZeros(x);
// calculate scrambled but hopefully injective answer
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x *= magic;
x = Integer::unsignedRightShift(x, 32 - log2n);
// reject if answer is not injective
if( table[x] != -1 ){
return table[x] == leadingZeros;
}
// store result for further injectivity checks
table[x] = leadingZeros;
return true;
}
static int32 goodNumberOfLeadingZeros (int32 x)
{
int32 r = 32;
if( cast<uint32>(x) & 0xffff0000 ){
x >>= 16;
r -= 16;
}
if( x & 0xff00 ){
x >>= 8;
r -= 8;
}
if( x & 0xf0 ){
x >>= 4;
r -= 4;
}
if( x & 0xc ){
x >>= 2;
r -= 2;
}
if( x & 0x2 ){
x >>= 1;
r--;
}
if( x & 0x1 ){
r--;
}
return r;
}
int32 table[n];
};
int32 main (int32 argc, char* argv[])
{
if(argc||argv){}
measure{
MagicNumberGenerator gen;
gen.tryAllMagic();
}
}