My solution is to calculate the result image size, and then do a translation.
def warpTwoImages(img1, img2, H):
'''warp img2 to img1 with homograph H'''
h1,w1 = img1.shape[:2]
h2,w2 = img2.shape[:2]
pts1 = float32([[0,0],[0,h1],[w1,h1],[w1,0]]).reshape(-1,1,2)
pts2 = float32([[0,0],[0,h2],[w2,h2],[w2,0]]).reshape(-1,1,2)
pts2_ = cv2.perspectiveTransform(pts2, H)
pts = concatenate((pts1, pts2_), axis=0)
[xmin, ymin] = int32(pts.min(axis=0).ravel() - 0.5)
[xmax, ymax] = int32(pts.max(axis=0).ravel() + 0.5)
t = [-xmin,-ymin]
Ht = array([[1,0,t[0]],[0,1,t[1]],[0,0,1]]) # translate
result = cv2.warpPerspective(img2, Ht.dot(H), (xmax-xmin, ymax-ymin))
result[t[1]:h1+t[1],t[0]:w1+t[0]] = img1
return result
dst_pts = float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
src_pts = float32([kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = warpTwoImages(img1_color, img2_color, M)