Here is an implementation of a multiprocessing.Queue
object that can be used with asyncio
. It provides the entire multiprocessing.Queue
interface, with the addition of coro_get
and coro_put
methods, which are asyncio.coroutine
s that can be used to asynchronously get/put from/into the queue. The implementation details are essentially the same as the second example of my other answer: ThreadPoolExecutor
is used to make the get/put asynchronous, and a multiprocessing.managers.SyncManager.Queue
is used to share the queue between processes. The only additional trick is implementing __getstate__
to keep the object picklable despite using a non-picklable ThreadPoolExecutor
as an instance variable.
from multiprocessing import Manager, cpu_count
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
def AsyncProcessQueue(maxsize=0):
m = Manager()
q = m.Queue(maxsize=maxsize)
return _ProcQueue(q)
class _ProcQueue(object):
def __init__(self, q):
self._queue = q
self._real_executor = None
self._cancelled_join = False
@property
def _executor(self):
if not self._real_executor:
self._real_executor = ThreadPoolExecutor(max_workers=cpu_count())
return self._real_executor
def __getstate__(self):
self_dict = self.__dict__
self_dict['_real_executor'] = None
return self_dict
def __getattr__(self, name):
if name in ['qsize', 'empty', 'full', 'put', 'put_nowait',
'get', 'get_nowait', 'close']:
return getattr(self._queue, name)
else:
raise AttributeError("'%s' object has no attribute '%s'" %
(self.__class__.__name__, name))
@asyncio.coroutine
def coro_put(self, item):
loop = asyncio.get_event_loop()
return (yield from loop.run_in_executor(self._executor, self.put, item))
@asyncio.coroutine
def coro_get(self):
loop = asyncio.get_event_loop()
return (yield from loop.run_in_executor(self._executor, self.get))
def cancel_join_thread(self):
self._cancelled_join = True
self._queue.cancel_join_thread()
def join_thread(self):
self._queue.join_thread()
if self._real_executor and not self._cancelled_join:
self._real_executor.shutdown()
@asyncio.coroutine
def _do_coro_proc_work(q, stuff, stuff2):
ok = stuff + stuff2
print("Passing %s to parent" % ok)
yield from q.coro_put(ok) # Non-blocking
item = q.get() # Can be used with the normal blocking API, too
print("got %s back from parent" % item)
def do_coro_proc_work(q, stuff, stuff2):
loop = asyncio.get_event_loop()
loop.run_until_complete(_do_coro_proc_work(q, stuff, stuff2))
@asyncio.coroutine
def do_work(q):
loop.run_in_executor(ProcessPoolExecutor(max_workers=1),
do_coro_proc_work, q, 1, 2)
item = yield from q.coro_get()
print("Got %s from worker" % item)
item = item + 25
q.put(item)
if __name__ == "__main__":
q = AsyncProcessQueue()
loop = asyncio.get_event_loop()
loop.run_until_complete(do_work(q))
Output:
Passing 3 to parent
Got 3 from worker
got 28 back from parent
As you can see, you can use the AsyncProcessQueue
both synchronously and asynchronously, from either the parent or child process. It doesn't require any global state, and by encapsulating most of the complexity in a class, is more elegant to use than my original answer.
You'll probably be able to get better performance using sockets directly, but getting that working in a cross-platform way seems to be pretty tricky. This also has the advantage of being usable across multiple workers, won't require you to pickle/unpickle yourself, etc.