Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
434 views
in Technique[技术] by (71.8m points)

python - Is "norm" equivalent to "Euclidean distance"?

I am not sure whether "norm" and "Euclidean distance" mean the same thing. Please could you help me with this distinction.

I have an n by m array a, where m > 3. I want to calculate the Eculidean distance between the second data point a[1,:] to all the other points (including itself). So I used the np.linalg.norm, which outputs the norm of two given points. But I don't know if this is the right way of getting the EDs.

import numpy as np

a = np.array([[0, 0, 0 ,0 ], [1, 1 , 1, 1],[2,2, 2, 3], [3,5, 1, 5]])
N = a.shape[0] # number of row
pos = a[1,:] # pick out the second data point. 
dist = np.zeros((N,1), dtype=np.float64)

for i in range(N):
    dist[i]= np.linalg.norm(a[i,:] - pos)
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

A norm is a function that takes a vector as an input and returns a scalar value that can be interpreted as the "size", "length" or "magnitude" of that vector. More formally, norms are defined as having the following mathematical properties:

  • They scale multiplicatively, i.e. Norm(a·v) = |a|·Norm(v) for any scalar a
  • They satisfy the triangle inequality, i.e. Norm(u + v) ≤ Norm(u) + Norm(v)
  • The norm of a vector is zero if and only if it is the zero vector, i.e. Norm(v) = 0 ? v = 0

The Euclidean norm (also known as the L2 norm) is just one of many different norms - there is also the max norm, the Manhattan norm etc. The L2 norm of a single vector is equivalent to the Euclidean distance from that point to the origin, and the L2 norm of the difference between two vectors is equivalent to the Euclidean distance between the two points.


As @nobar's answer says, np.linalg.norm(x - y, ord=2) (or just np.linalg.norm(x - y)) will give you Euclidean distance between the vectors x and y.

Since you want to compute the Euclidean distance between a[1, :] and every other row in a, you could do this a lot faster by eliminating the for loop and broadcasting over the rows of a:

dist = np.linalg.norm(a[1:2] - a, axis=1)

It's also easy to compute the Euclidean distance yourself using broadcasting:

dist = np.sqrt(((a[1:2] - a) ** 2).sum(1))

The fastest method is probably scipy.spatial.distance.cdist:

from scipy.spatial.distance import cdist

dist = cdist(a[1:2], a)[0]

Some timings for a (1000, 1000) array:

a = np.random.randn(1000, 1000)

%timeit np.linalg.norm(a[1:2] - a, axis=1)
# 100 loops, best of 3: 5.43 ms per loop

%timeit np.sqrt(((a[1:2] - a) ** 2).sum(1))
# 100 loops, best of 3: 5.5 ms per loop

%timeit cdist(a[1:2], a)[0]
# 1000 loops, best of 3: 1.38 ms per loop

# check that all 3 methods return the same result
d1 = np.linalg.norm(a[1:2] - a, axis=1)
d2 = np.sqrt(((a[1:2] - a) ** 2).sum(1))
d3 = cdist(a[1:2], a)[0]

assert np.allclose(d1, d2) and np.allclose(d1, d3)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...