Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
292 views
in Technique[技术] by (71.8m points)

python - Understanding Tensorflow LSTM Input shape

I have a dataset X which consists N = 4000 samples, each sample consists of d = 2 features (continuous values) spanning back t = 10 time steps. I also have the corresponding 'labels' of each sample which are also continuous values, at time step 11.

At the moment my dataset is in the shape X: [4000,20], Y: [4000].

I want to train an LSTM using TensorFlow to predict the value of Y (regression), given the 10 previous inputs of d features, but I am having a tough time implementing this in TensorFlow.

The main problem I have at the moment is understanding how TensorFlow is expecting the input to be formatted. I have seen various examples such as this, but these examples deal with one big string of continuous time series data. My data is different samples, each an independent time series.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The documentation of tf.nn.dynamic_rnn states:

inputs: The RNN inputs. If time_major == False (default), this must be a Tensor of shape: [batch_size, max_time, ...], or a nested tuple of such elements.

In your case, this means that the input should have a shape of [batch_size, 10, 2]. Instead of training on all 4000 sequences at once, you'd use only batch_size many of them in each training iteration. Something like the following should work (added reshape for clarity):

batch_size = 32
# batch_size sequences of length 10 with 2 values for each timestep
input = get_batch(X, batch_size).reshape([batch_size, 10, 2])
# Create LSTM cell with state size 256. Could also use GRUCell, ...
# Note: state_is_tuple=False is deprecated;
# the option might be completely removed in the future
cell = tf.nn.rnn_cell.LSTMCell(256, state_is_tuple=True)
outputs, state = tf.nn.dynamic_rnn(cell,
                                   input,
                                   sequence_length=[10]*batch_size,
                                   dtype=tf.float32)

From the documentation, outputs will be of shape [batch_size, 10, 256], i.e. one 256-output for each timestep. state will be a tuple of shapes [batch_size, 256]. You could predict your final value, one for each sequence, from that:

predictions = tf.contrib.layers.fully_connected(state.h,
                                                num_outputs=1,
                                                activation_fn=None)
loss = get_loss(get_batch(Y).reshape([batch_size, 1]), predictions)

The number 256 in the shapes of outputs and state is determined by cell.output_size resp. cell.state_size. When creating the LSTMCell like above, these are the same. Also see the LSTMCell documentation.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...