Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
208 views
in Technique[技术] by (71.8m points)

python - Concurrency control in Django model

How do I handle concurrency in a Django model? I don't want the changes to the record being overwritten by another user who reads the same record.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The short answer, this really isn't a Django question as presented.

Concurrency control is often presented as a technical question, but is in many ways a question of functional requirements. How do you want/need your application to work? Until we know that, it will be difficult to give any Django-specific advice.

But, I feel like rambling, so here goes...

There are two questions that I tend to ask myself when confronted with the need for concurrency control:

  • How likely is it that two users will need to concurrently modify the same record?
  • What is the impact to the user if his/her modifications to a record are lost?

If the likelihood of collisions is relatively high, or the impact of losing a modification is severe, then you may be looking at some form of pessimistic locking. In a pessimistic scheme, each user must acquire a logical lock prior to opening the record for modification.

Pessimistic locking comes with much complexity. You must synchronize access to the locks, consider fault tolerance, lock expiration, can locks be overridden by super users, can users see who has the lock, so on and so on.

In Django, this could be implemented with a separate Lock model or some kind of 'lock user' foreign key on the locked record. Using a lock table gives you a bit more flexibility in terms of storing when the lock was acquired, user, notes, etc. If you need a generic lock table that can be used to lock any kind of record, then take a look at the django.contrib.contenttypes framework, but quickly this can devolve into abstraction astronaut syndrome.

If collisions are unlikely or lost modifications are trivially recreated, then you can functionally get away with optimistic concurrency techniques. This technique is simple and easier to implement. Essentially, you just keep track of a version number or modification time stamp and reject any modifications that you detect as out of whack.

From a functional design standpoint, you only have to consider how these concurrent modification errors are presented to your users.

In terms of Django, optimistic concurrency control can be implemented by overriding the save method on your model class...

def save(self, *args, **kwargs):
    if self.version != self.read_current_version():
        raise ConcurrentModificationError('Ooops!!!!')
    super(MyModel, self).save(*args, **kwargs)

And, of course, for either of these concurrency mechanisms to be robust, you have to consider transactional control. Neither of these models are fully workable if you can't guarantee ACID properties of your transactions.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

1.4m articles

1.4m replys

5 comments

57.0k users

...