Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
446 views
in Technique[技术] by (71.8m points)

optimization - CUDA Block and Grid size efficiencies

What is the advised way of dealing with dynamically-sized datasets in cuda?

Is it a case of 'set the block and grid sizes based on the problem set' or is it worthwhile to assign block dimensions as factors of 2 and have some in-kernel logic to deal with the over-spill?

I can see how this probably matters alot for the block dimensions, but how much does this matter to the grid dimensions? As I understand it, the actual hardware constraints stop at the block level (i.e blocks assigned to SM's that have a set number of SP's, and so can handle a particular warp size).

I've perused Kirk's 'Programming Massively Parallel Processors' but it doesn't really touch on this area.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

It s usually a case of setting block size for optimal performance, and grid size according to the total amount of work. Most kernels have a "sweet spot" number of warps per Mp where they work best, and you should do some benchmarking/profiling to see where that is. You probably still need over-spill logic in the kernel because problem sizes are rarely round multiples of block sizes.

EDIT: To give a concrete example of how this might be done for a simple kernel (in this case a custom BLAS level 1 dscal type operation done as part of a Cholesky factorization of packed symmetric band matrices):

// Fused square root and dscal operation
__global__ 
void cdivkernel(const int n, double *a)
{
    __shared__ double oneondiagv;

    int imin = threadIdx.x + blockDim.x * blockIdx.x;
    int istride = blockDim.x * gridDim.x;

    if (threadIdx.x == 0) {
        oneondiagv = rsqrt( a[0] );
    }
    __syncthreads();

    for(int i=imin; i<n; i+=istride) {
        a[i] *= oneondiagv;
    }
}

To launch this kernel, the execution parameters are calculated as follows:

  1. We allow up to 4 warps per block (so 128 threads). Normally you would fix this at an optimal number, but in this case the kernel is often called on very small vectors, so having a variable block size made some sense.
  2. We then compute the block count according to the total amount of work, up to 112 total blocks, which is the equivalent of 8 blocks per MP on a 14 MP Fermi Telsa. The kernel will iterate if the amount of work exceeds grid size.

The resulting wrapper function containing the execution parameter calculations and kernel launch look like this:

// Fused the diagonal element root and dscal operation into
// a single "cdiv" operation
void fusedDscal(const int n, double *a)
{
    // The semibandwidth (column length) determines
    // how many warps are required per column of the 
    // matrix.
    const int warpSize = 32;
    const int maxGridSize = 112; // this is 8 blocks per MP for a Telsa C2050

    int warpCount = (n / warpSize) + (((n % warpSize) == 0) ? 0 : 1);
    int warpPerBlock = max(1, min(4, warpCount));

    // For the cdiv kernel, the block size is allowed to grow to
    // four warps per block, and the block count becomes the warp count over four
    // or the GPU "fill" whichever is smaller
    int threadCount = warpSize * warpPerBlock;
    int blockCount = min( maxGridSize, max(1, warpCount/warpPerBlock) );
    dim3 BlockDim = dim3(threadCount, 1, 1);
    dim3 GridDim  = dim3(blockCount, 1, 1);

    cdivkernel<<< GridDim,BlockDim >>>(n,a);
    errchk( cudaPeekAtLastError() );
}

Perhaps this gives some hints about how to design a "universal" scheme for setting execution parameters against input data size.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...