Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
517 views
in Technique[技术] by (71.8m points)

machine learning - Approximating the sine function with a neural network

I have implemented a simple neural network framework which only supports multi-layer perceptrons and simple backpropagation. It works okay-ish for linear classification, and the usual XOR problem, but for sine function approximation the results are not that satisfying.

I'm basically trying to approximate one period of the sine function with one hidden layer consisting of 6-10 neurons. The network uses hyperbolic tangent as an activation function for the hidden layer and a linear function for the output. The result remains a quite rough estimate of the sine wave and takes long to calculate.

I looked at encog for reference and but even with that I fail to get it work with simple backpropagation (by switching to resilient propagation it starts to get better but is still way worse than the super slick R script provided in this similar question). So am I actually trying to do something that's not possible? Is it not possible to approximate sine with simple backpropagation (no momentum, no dynamic learning rate)? What is the actual method used by the neural network library in R?

EDIT: I know that it is definitely possible to find a good-enough approximation even with simple backpropagation (if you are incredibly lucky with your initial weights) but I actually was more interested to know if this is a feasible approach. The R script I linked to just seems to converge so incredibly fast and robustly (in 40 epochs with only few learning samples) compared to my implementation or even encog's resilient propagation. I'm just wondering if there's something I can do to improve my backpropagation algorithm to get that same performance or do I have to look into some more advanced learning method?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

This can be rather easily implemented using modern frameworks for neural networks like TensorFlow.

For example, a two-layer neural network using 100 neurons per layer trains in a few seconds on my computer and gives a good approximation:

enter image description here

The code is also quite simple:

import tensorflow as tf
import numpy as np

with tf.name_scope('placeholders'):
    x = tf.placeholder('float', [None, 1])
    y = tf.placeholder('float', [None, 1])

with tf.name_scope('neural_network'):
    x1 = tf.contrib.layers.fully_connected(x, 100)
    x2 = tf.contrib.layers.fully_connected(x1, 100)
    result = tf.contrib.layers.fully_connected(x2, 1,
                                               activation_fn=None)

    loss = tf.nn.l2_loss(result - y)

with tf.name_scope('optimizer'):
    train_op = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    # Train the network
    for i in range(10000):
        xpts = np.random.rand(100) * 10
        ypts = np.sin(xpts)

        _, loss_result = sess.run([train_op, loss],
                                  feed_dict={x: xpts[:, None],
                                             y: ypts[:, None]})

        print('iteration {}, loss={}'.format(i, loss_result))

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...