Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
401 views
in Technique[技术] by (71.8m points)

python - Pandas - GroupBy and then Merge on original table

I'm trying to write a function to aggregate and perform various stats calcuations on a dataframe in Pandas and then merge it to the original dataframe however, I'm running to issues. This is code equivalent in SQL:

SELECT EID,
       PCODE,
       SUM(PVALUE) AS PVALUE,
       SUM(SQRT(SC*EXP(SC-1))) AS SC,
       SUM(SI) AS SI,
       SUM(EE) AS EE
INTO foo_bar_grp
FROM foo_bar
GROUP BY EID, PCODE 

And then join on the original table:

SELECT *
FROM foo_bar_grp INNER JOIN 
foo_bar ON foo_bar.EID = foo_bar_grp.EID 
        AND foo_bar.PCODE = foo_bar_grp.PCODE

Here are the steps: Loading the data IN:>>

pol_dict = {'PID':[1,1,2,2],
             'EID':[123,123,123,123],
             'PCODE':['GU','GR','GU','GR'],
             'PVALUE':[100,50,150,300],
             'SI':[400,40,140,140],
             'SC':[230,23,213,213],
             'EE':[10000,10000,2000,30000],
             }


pol_df = DataFrame(pol_dict)

pol_df

OUT:>>

   EID    EE PCODE  PID  PVALUE   SC   SI
0  123  10000    GU    1     100  230  400
1  123  10000    GR    1      50   23   40
2  123   2000    GU    2     150  213  140
3  123  30000    GR    2     300  213  140

Step 2: Calculating and Grouping on the data:

My pandas code is as follows:

#create aggregation dataframe
poagg_df = pol_df
del poagg_df['PID']
po_grouped_df = poagg_df.groupby(['EID','PCODE'])

#generate acc level aggregate
acc_df = po_grouped_df.agg({
    'PVALUE' : np.sum,
    'SI' : lambda x: np.sqrt(np.sum(x * np.exp(x-1))),
    'SC' : np.sum,
    'EE' : np.sum
})

This works fine until I want to join on the original table:

IN:>>

po_account_df = pd.merge(acc_df, po_df, on=['EID','PCODE'], how='inner',suffixes=('_Acc','_Po'))

OUT:>> KeyError: u'no item named EID'

For some reason, the grouped dataframe can't join back to the original table. I've looked at ways of trying to convert the groupby columns to actual columns but that doesn't seem to work.

Please note, the end goal is to be able to find the percentage for each column (PVALUE, SI, SC, EE) IE:

pol_acc_df['PVALUE_PCT'] = np.round(pol_acc_df.PVALUE_Po/pol_acc_df.PVALUE_Acc,4)

Thanks!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

By default, groupby output has the grouping columns as indicies, not columns, which is why the merge is failing.

There are a couple different ways to handle it, probably the easiest is using the as_index parameter when you define the groupby object.

po_grouped_df = poagg_df.groupby(['EID','PCODE'], as_index=False)

Then, your merge should work as expected.

In [356]: pd.merge(acc_df, pol_df, on=['EID','PCODE'], how='inner',suffixes=('_Acc','_Po'))
Out[356]: 
   EID PCODE  SC_Acc  EE_Acc        SI_Acc  PVALUE_Acc  EE_Po  PVALUE_Po  
0  123    GR     236   40000  1.805222e+31         350  10000         50   
1  123    GR     236   40000  1.805222e+31         350  30000        300   
2  123    GU     443   12000  8.765549e+87         250  10000        100   
3  123    GU     443   12000  8.765549e+87         250   2000        150   

   SC_Po  SI_Po  
0     23     40  
1    213    140  
2    230    400  
3    213    140  

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...