Edit 1 : Original answer about saving model
With HDF5 :
# saving model
json_model = model_tt.model.to_json()
open('model_architecture.json', 'w').write(json_model)
# saving weights
model_tt.model.save_weights('model_weights.h5', overwrite=True)
# loading model
from keras.models import model_from_json
model = model_from_json(open('model_architecture.json').read())
model.load_weights('model_weights.h5')
# dont forget to compile your model
model.compile(loss='binary_crossentropy', optimizer='adam')
Edit 2 : full code example with iris dataset
# Train model and make predictions
import numpy
import pandas
from keras.models import Sequential, model_from_json
from keras.layers import Dense
from keras.utils import np_utils
from sklearn import datasets
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load dataset
iris = datasets.load_iris()
X, Y, labels = iris.data, iris.target, iris.target_names
X = preprocessing.scale(X)
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# convert integers to dummy variables (i.e. one hot encoded)
y = np_utils.to_categorical(encoded_Y)
def build_model():
# create model
model = Sequential()
model.add(Dense(4, input_dim=4, init='normal', activation='relu'))
model.add(Dense(3, init='normal', activation='sigmoid'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
def save_model(model):
# saving model
json_model = model.to_json()
open('model_architecture.json', 'w').write(json_model)
# saving weights
model.save_weights('model_weights.h5', overwrite=True)
def load_model():
# loading model
model = model_from_json(open('model_architecture.json').read())
model.load_weights('model_weights.h5')
model.compile(loss='categorical_crossentropy', optimizer='adam')
return model
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.3, random_state=seed)
# build
model = build_model()
model.fit(X_train, Y_train, nb_epoch=200, batch_size=5, verbose=0)
# save
save_model(model)
# load
model = load_model()
# predictions
predictions = model.predict_classes(X_test, verbose=0)
print(predictions)
# reverse encoding
for pred in predictions:
print(labels[pred])
Please note that I used Keras only, not the wrapper. It only add some complexity in something simple. Also code is volontary not factored so you can have the whole picture.
Also, you said you want to output 1 or 0. It is not possible in this dataset because you have 3 output dims and classes (Iris-setosa, Iris-versicolor, Iris-virginica). If you had only 2 classes then your output dim and classes would be 0 or 1 using sigmoid output fonction.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…