Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
352 views
in Technique[技术] by (71.8m points)

python - Convert list of tuples to structured numpy array

I have a list of Num_tuples tuples that all have the same length Dim_tuple

xlist = [tuple_1, tuple_2, ..., tuple_Num_tuples]

For definiteness, let's say Num_tuples=3 and Dim_tuple=2

xlist = [(1, 1.1), (2, 1.2), (3, 1.3)]

I want to convert xlist into a structured numpy array xarr using a user-provided list of column names user_names and a user-provided list of variable types user_types

user_names = [name_1, name_2, ..., name_Dim_tuple]
user_types = [type_1, type_2, ..., type_Dim_tuple]

So in the creation of the numpy array,

dtype = [(name_1,type_1), (name_2,type_2), ..., (name_Dim_tuple, type_Dim_tuple)]

In the case of my toy example desired end product would look something like:

xarr['name1']=np.array([1,2,3])
xarr['name2']=np.array([1.1,1.2,1.3])

How can I slice xlist to create xarr without any loops?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

A list of tuples is the correct way of providing data to a structured array:

In [273]: xlist = [(1, 1.1), (2, 1.2), (3, 1.3)]

In [274]: dt=np.dtype('int,float')

In [275]: np.array(xlist,dtype=dt)
Out[275]: 
array([(1, 1.1), (2, 1.2), (3, 1.3)], 
      dtype=[('f0', '<i4'), ('f1', '<f8')])

In [276]: xarr = np.array(xlist,dtype=dt)

In [277]: xarr['f0']
Out[277]: array([1, 2, 3])

In [278]: xarr['f1']
Out[278]: array([ 1.1,  1.2,  1.3])

or if the names are important:

In [280]: xarr.dtype.names=['name1','name2']

In [281]: xarr
Out[281]: 
array([(1, 1.1), (2, 1.2), (3, 1.3)], 
      dtype=[('name1', '<i4'), ('name2', '<f8')])

http://docs.scipy.org/doc/numpy/user/basics.rec.html#filling-structured-arrays


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...