I have the following pandas DataFrame.
import pandas as pd
df = pd.read_csv('filename.csv')
print(df)
dog A B C
0 dog1 0.787575 0.159330 0.053095
1 dog10 0.770698 0.169487 0.059815
2 dog11 0.792689 0.152043 0.055268
3 dog12 0.785066 0.160361 0.054573
4 dog13 0.795455 0.150464 0.054081
5 dog14 0.794873 0.150700 0.054426
.. ....
8 dog19 0.811585 0.140207 0.048208
9 dog2 0.797202 0.152033 0.050765
10 dog20 0.801607 0.145137 0.053256
11 dog21 0.792689 0.152043 0.055268
....
I create a new column by summing columns "A"
, "B"
, "C"
as follows:
df['total_ABC'] = df[["A", "B", "B"]].sum(axis=1)
Now I would like to do this based on a conditional, i.e. if "A" < 0.78
then create a new summed column df['smallA_sum'] = df[["A", "B", "B"]].sum(axis=1)
. Otherwise, the value should be zero.
How does one create conditional statements like this?
My thought would be to use
df['smallA_sum'] = df1.apply(lambda row: (row['A']+row['B']+row['C']) if row['A'] < 0.78))
However, this doesn't work and I'm not able to specify axis.
How do you create a column based on the values of other columns?
You could also do something like for each df['dog'] == 'dog2'
, create column dog2_sum
, i.e.
df['dog2_sum'] = df1.apply(lambda row: (row['A']+row['B']+row['C']) if df['dog'] == 'dog2'))
but my approach is incorrect.
`
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…