Thanks for your answers - after thinking a bit more about this I came up with the following code:
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as mpl
from scipy.interpolate import interp1d
from scipy.ndimage import map_coordinates
def polar2cartesian(r, t, grid, x, y, order=3):
X, Y = np.meshgrid(x, y)
new_r = np.sqrt(X*X+Y*Y)
new_t = np.arctan2(X, Y)
ir = interp1d(r, np.arange(len(r)), bounds_error=False)
it = interp1d(t, np.arange(len(t)))
new_ir = ir(new_r.ravel())
new_it = it(new_t.ravel())
new_ir[new_r.ravel() > r.max()] = len(r)-1
new_ir[new_r.ravel() < r.min()] = 0
return map_coordinates(grid, np.array([new_ir, new_it]),
order=order).reshape(new_r.shape)
# Define original polar grid
nr = 10
nt = 10
r = np.linspace(1, 100, nr)
t = np.linspace(0., np.pi, nt)
z = np.random.random((nr, nt))
# Define new cartesian grid
nx = 100
ny = 200
x = np.linspace(0., 100., nx)
y = np.linspace(-100., 100., ny)
# Interpolate polar grid to cartesian grid (nearest neighbor)
fig = mpl.figure()
ax = fig.add_subplot(111)
ax.imshow(polar2cartesian(r, t, z, x, y, order=0), interpolation='nearest')
fig.savefig('test1.png')
# Interpolate polar grid to cartesian grid (cubic spline)
fig = mpl.figure()
ax = fig.add_subplot(111)
ax.imshow(polar2cartesian(r, t, z, x, y, order=3), interpolation='nearest')
fig.savefig('test2.png')
Which is not strictly re-gridding, but works fine for what I need. Just posting the code in case it is useful to anyone else. Feel free to suggest improvements!
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…