Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
947 views
in Technique[技术] by (71.8m points)

math - Approximate e^x

I'd like to approximate the ex function.

Is it possible to do so using multiple splines type based approach? i.e between x1 and x2, then

y1 = a1x + b1, between x2 and x3,

then

y2 = a2x + b2

etc

This is for dedicated fpga hardware and not a general purpose CPU. As such I need to create the function myself. Accuracy is much less of a concern. Furthermore I can't really afford more than one multiplication circuit and/or multiple shifts/adders. Also I want something much smaller than a CORDIC function, in fact size is critical.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

How about a strategy like this that uses the formula

ex = 2 x/ln(2)

  1. Precalculate 1/ln(2)
  2. Multiply this constant by your argument (1 multiplication)
  3. Use binary shifts to raise 2 to the integer portion of the power (assumes exp+mantissa format)
  4. Adjust based on the fractional power-of-2 remainder (likely a second multiplication)

I realize this is not a complete solution, but it does only require a single multiplication and reduces the remaining problem to approximating a fractional power of 2, which should be easier to implement in hardware.

Also, if your application is specialized enough, you could try to re-derive all of the numerical code that will run on your hardware to be in a base-e number system and implement your floating point hardware to work in base e as well. Then no conversion is needed at all.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...