python-graph
added:
The comments made me curious as to how the performance of pygraph was for a problem on the order of the OP, so I made a toy program to find out. Here's the output for a slightly smaller version of the problem:
$ python2.6 biggraph.py 4 6
biggraph generate 10000 nodes 00:00:00
biggraph generate 1000000 edges 00:00:00
biggraph add edges 00:00:05
biggraph Dijkstra 00:01:32
biggraph shortest_path done 00:04:15
step: 1915 2
step: 0 1
biggraph walk done 00:04:15
path: [9999, 1915, 0]
Not too bad for 10k nodes and 1M edges. It is important to note that the way Dijkstra's is computed by pygraph yields a dictionary of all spanning trees for each node relative to one target (which was arbitrarily node 0, and holds no privileged position in the graph). Therefore, the solution that took 3.75 minutes to compute actually yielded the answer to "what is the shortest path from all nodes to the target?". Indeed once shortest_path
was done, walking the answer was mere dictionary lookups and took essentially no time. It is also worth noting that adding the pre-computed edges to the graph was rather expensive at ~1.5 minutes. These timings are consistent across multiple runs.
I'd like to say that the process scales well, but I'm still waiting on biggraph 5 6
on an otherwise idled computer (Athlon 64, 4800 BogoMIPS per processor, all in core) which has been running for over a quarter hour. At least the memory use is stable at about 0.5GB. And the results are in:
biggraph generate 100000 nodes 00:00:00
biggraph generate 1000000 edges 00:00:00
biggraph add edges 00:00:07
biggraph Dijkstra 00:01:27
biggraph shortest_path done 00:23:44
step: 48437 4
step: 66200 3
step: 83824 2
step: 0 1
biggraph walk done 00:23:44
path: [99999, 48437, 66200, 83824, 0]
That's a long time, but it was also a heavy computation (and I really wish I'd pickled the result). Here's the code for the curious:
#!/usr/bin/python
import pygraph.classes.graph
import pygraph.algorithms
import pygraph.algorithms.minmax
import time
import random
import sys
if len(sys.argv) != 3:
print ('usage %s: node_exponent edge_exponent' % sys.argv[0])
sys.exit(1)
nnodes = 10**int(sys.argv[1])
nedges = 10**int(sys.argv[2])
start_time = time.clock()
def timestamp(s):
t = time.gmtime(time.clock() - start_time)
print 'biggraph', s.ljust(24), time.strftime('%H:%M:%S', t)
timestamp('generate %d nodes' % nnodes)
bg = pygraph.classes.graph.graph()
bg.add_nodes(xrange(nnodes))
timestamp('generate %d edges' % nedges)
edges = set()
while len(edges) < nedges:
left, right = random.randrange(nnodes), random.randrange(nnodes)
if left == right:
continue
elif left > right:
left, right = right, left
edges.add((left, right))
timestamp('add edges')
for edge in edges:
bg.add_edge(edge)
timestamp("Dijkstra")
target = 0
span, dist = pygraph.algorithms.minmax.shortest_path(bg, target)
timestamp('shortest_path done')
# the paths from any node to target is in dict span, let's
# pick any arbitrary node (the last one) and walk to the
# target from there, the associated distance will decrease
# monotonically
lastnode = nnodes - 1
path = []
while lastnode != target:
nextnode = span[lastnode]
print 'step:', nextnode, dist[lastnode]
assert nextnode in bg.neighbors(lastnode)
path.append(lastnode)
lastnode = nextnode
path.append(target)
timestamp('walk done')
print 'path:', path