Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
215 views
in Technique[技术] by (71.8m points)

c++ - How to remove black part from the image?

I have stitched two images together using OpenCV functions and C++. Now I am facing a problem that the final image contains a large black part.

The final image should be a rectangle containing the effective part. My image is the following:

enter image description here

How can I remove the black section?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

mevatron's answer is one way where amount of black region is minimised while retaining full image.

Another option is removing complete black region where you also loose some part of image, but result will be a neat looking rectangular image. Below is the Python code.

Here, you find three main corners of the image as below:

enter image description here

I have marked those values. (1,x2), (x1,1), (x3,y3). It is based on the assumption that your image starts from (1,1).

Code :

First steps are same as mevatron's. Blur the image to remove noise, threshold the image, then find contours.

import cv2
import numpy as np

img = cv2.imread('office.jpg')
img = cv2.resize(img,(800,400))

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray,3)

ret,thresh = cv2.threshold(gray,1,255,0)
contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

Now find the biggest contour which is your image. It is to avoid noise in case if any (Most probably there won't be any). Or you can use mevatron's method.

max_area = -1
best_cnt = None

for cnt in contours:
    
    area = cv2.contourArea(cnt)
    if area > max_area:
        max_area = area
        best_cnt = cnt

Now approximate the contour to remove unnecessary points in contour values found, but it preserve all corner values.

approx = cv2.approxPolyDP(best_cnt,0.01*cv2.arcLength(best_cnt,True),True)

Now we find the corners.

First, we find (x3,y3). It is farthest point. So x3*y3 will be very large. So we find products of all pair of points and select the pair with maximum product.

far = approx[np.product(approx,2).argmax()][0]

Next (1,x2). It is the point where first element is one,then second element is maximum.

ymax = approx[approx[:,:,0]==1].max()

Next (x1,1). It is the point where second element is 1, then first element is maximum.

xmax = approx[approx[:,:,1]==1].max()

Now we find the minimum values in (far.x,xmax) and (far.y, ymax)

x = min(far[0],xmax)
y = min(far[1],ymax)

If you draw a rectangle with (1,1) and (x,y), you get result as below:

enter image description here

So you crop the image to correct rectangular area.

img2 = img[:y,:x].copy()

Below is the result:

enter image description here

See, the problem is that you lose some parts of the stitched image.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...