Here's an O(n √A)
-time algorithm to compute the b
array where n
is the number of elements in the a
array and A
is the maximum element of the a
array.
This algorithm computes the difference sequence of the b
array (?b = b[0], b[1] - b[0], b[2] - b[1], ..., b[n-1] - b[n-2]
) and derives b
itself as the cumulative sums. Since the differences are linear, we can start with ?b = 0, 0, ..., 0
, loop over each element a[i]
, and add the difference sequence for [a[i]], [a[i]/2], [a[i]/3], ...
at the appropriate spot. The key is that this difference sequence is sparse (less than 2√a[i]
elements). For example, for a[i] = 36
,
>>> [36//j for j in range(1,37)]
[36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> list(map(operator.sub,_,[0]+_[:-1]))
[36, -18, -6, -3, -2, -1, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We can derive the difference sequence from a subroutine that, given a positive integer r
, returns all maximal pairs of positive integers (p, q)
such that pq ≤ r
.
See complete Python code below.
def maximal_pairs(r):
p = 1
q = r
while p < q:
yield (p, q)
p += 1
q = r // p
while q > 0:
p = r // q
yield (p, q)
q -= 1
def compute_b_fast(a):
n = len(a)
delta_b = [0] * n
for i, ai in enumerate(a):
previous_j = i
for p, q in maximal_pairs(ai):
delta_b[previous_j] += q
j = i + p
if j >= n:
break
delta_b[j] -= q
previous_j = j
for i in range(1, n):
delta_b[i] += delta_b[i - 1]
return delta_b
def compute_b_slow(a):
n = len(a)
b = [0] * n
for i, ai in enumerate(a):
for j in range(n - i):
b[i + j] += ai // (j + 1)
return b
for n in range(1, 100):
print(list(maximal_pairs(n)))
lst = [1, 34, 3, 2, 9, 21, 3, 2, 2, 1]
print(compute_b_fast(lst))
print(compute_b_slow(lst))