Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
260 views
in Technique[技术] by (71.8m points)

c++ - Efficient way to compute geometric mean of many numbers

I need to compute the geometric mean of a large set of numbers, whose values are not a priori limited. The naive way would be

double geometric_mean(std::vector<double> const&data) // failure
{
  auto product = 1.0;
  for(auto x:data) product *= x;
  return std::pow(product,1.0/data.size());
}

However, this may well fail because of underflow or overflow in the accumulated product (note: long double doesn't really avoid this problem). So, the next option is to sum-up the logarithms:

double geometric_mean(std::vector<double> const&data)
{
  auto sumlog = 0.0;
  for(auto x:data) sum_log += std::log(x);
  return std::exp(sum_log/data.size());
}

This works, but calls std::log() for every element, which is potentially slow. Can I avoid that? For example by keeping track of (the equivalent of) the exponent and the mantissa of the accumulated product separately?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

The "split exponent and mantissa" solution:

double geometric_mean(std::vector<double> const & data)
{
    double m = 1.0;
    long long ex = 0;
    double invN = 1.0 / data.size();

    for (double x : data)
    {
        int i;
        double f1 = std::frexp(x,&i);
        m*=f1;
        ex+=i;
    }

    return std::pow( std::numeric_limits<double>::radix,ex * invN) * std::pow(m,invN);
}

If you are concerned that ex might overflow you can define it as a double instead of a long long, and multiply by invN at every step, but you might lose a lot of precision with this approach.

EDIT For large inputs, we can split the computation in several buckets:

double geometric_mean(std::vector<double> const & data)
{
    long long ex = 0;
    auto do_bucket = [&data,&ex](int first,int last) -> double
    {
        double ans = 1.0;
        for ( ;first != last;++first)
        {
            int i;
            ans *= std::frexp(data[first],&i);
            ex+=i;
        }
        return ans;
    };

    const int bucket_size = -std::log2( std::numeric_limits<double>::min() );
    std::size_t buckets = data.size() / bucket_size;

    double invN = 1.0 / data.size();
    double m = 1.0;

    for (std::size_t i = 0;i < buckets;++i)
        m *= std::pow( do_bucket(i * bucket_size,(i+1) * bucket_size),invN );

    m*= std::pow( do_bucket( buckets * bucket_size, data.size() ),invN );

    return std::pow( std::numeric_limits<double>::radix,ex * invN ) * m;
}

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...