Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
245 views
in Technique[技术] by (71.8m points)

python - How do I turn a dataframe into a series of lists?

I have had to do this several times and I'm always frustrated. I have a dataframe:

df = pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], ['a', 'b'], ['A', 'B', 'C', 'D'])

print df

   A  B  C  D
a  1  2  3  4
b  5  6  7  8

I want to turn df into:

pd.Series([[1, 2, 3, 4], [5, 6, 7, 8]], ['a', 'b'])

a    [1, 2, 3, 4]
b    [5, 6, 7, 8]
dtype: object

I've tried

df.apply(list, axis=1)

Which just gets me back the same df

What is a convenient/effective way to do this?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

You can first convert DataFrame to numpy array by values, then convert to list and last create new Series with index from df if need faster solution:

print (pd.Series(df.values.tolist(), index=df.index))
a    [1, 2, 3, 4]
b    [5, 6, 7, 8]
dtype: object

Timings with small DataFrame:

In [76]: %timeit (pd.Series(df.values.tolist(), index=df.index))
1000 loops, best of 3: 295 μs per loop

In [77]: %timeit pd.Series(df.T.to_dict('list'))
1000 loops, best of 3: 685 μs per loop

In [78]: %timeit df.T.apply(tuple).apply(list)
1000 loops, best of 3: 958 μs per loop

and with large:

from string import ascii_letters
letters = list(ascii_letters)
df = pd.DataFrame(np.random.choice(range(10), (52 ** 2, 52)),
                  pd.MultiIndex.from_product([letters, letters]),
                  letters)

In [71]: %timeit (pd.Series(df.values.tolist(), index=df.index))
100 loops, best of 3: 2.06 ms per loop

In [72]: %timeit pd.Series(df.T.to_dict('list'))
1 loop, best of 3: 203 ms per loop

In [73]: %timeit df.T.apply(tuple).apply(list)
1 loop, best of 3: 506 ms per loop

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...