Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
869 views
in Technique[技术] by (71.8m points)

algorithm - How to sort a m x n matrix which has all its m rows sorted and n columns sorted?

Given a matrix with m rows and n columns, each of which are sorted. How to efficiently sort the entire matrix?

I know a solution which runs in O(m n log(min(m,n)). I am looking for a better solution.

The approach that I know basically takes 2 rows/cols at a time and applies merge operation.

Here is an example:

[[1,4,7,10],

 [2,5,8,11],

 [3,6,9,12]]

is the input martix which has every row and column sorted.

Expected output is:

[1,2,3,4,5,6,7,8,9,10,11,12]

Another example:

[[1, 2, 3, 3, 4, 5, 6, 6, 7, 7],

 [1, 2, 4, 6, 7, 7, 8, 8, 9,10],

 [3, 3, 4, 8, 8, 9,10,11,11,12],

 [3, 3, 5, 8, 8, 9,12,12,13,14]]
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Reply

0 votes
by (71.8m points)

I don't think you can do it any faster than Ω(m n log(min(m, n)), at least not in the general case.

Suppose (without loss of generality) that m < n. Then your matrix looks like this:

a matrix with rows and columns sorted

Each circle is a matrix entry and each arrow indicates a known order relation (the entry at the source of the arrow is smaller than the entry at the destination of the arrow).

To sort the matrix, we must resolve all the unknown order relations, some of which are shown in the grey boxes here:

the order relations remaining to be resolved

Sorting all of these boxes takes:

2 Σk < m Ω(k log k) + (n - m + 1) Ω(m log m)

= 2 Ω(m2 log m) + (n - m + 1) Ω(m log m)

= Ω(m n log m)


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
OGeek|极客中国-欢迎来到极客的世界,一个免费开放的程序员编程交流平台!开放,进步,分享!让技术改变生活,让极客改变未来! Welcome to OGeek Q&A Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...