For this specific problem, we can cook up something fairly simple, if we allow ourselves to choose a different enumeration ordering. The idea is basically the one in Every Bit Counts, which I also mentioned in the comments. First, some preliminaries: some imports/extensions, a data type representing the grammar, and a pretty-printer. For the sake of simplicity, my digits only go up to 2 (big enough to not be binary any more, but small enough not to wear out my fingers and your eyes).
{-# LANGUAGE TypeSynonymInstances #-}
import Control.Applicative
import Data.Universe.Helpers
type S = Add
data Add = Mul Mul | Add :+ Mul deriving (Eq, Ord, Show, Read)
data Mul = Term Term | Mul :* Term deriving (Eq, Ord, Show, Read)
data Term = Number Number | Parentheses S deriving (Eq, Ord, Show, Read)
data Number = Digit Digit | Digit ::: Number deriving (Eq, Ord, Show, Read)
data Digit = D0 | D1 | D2 deriving (Eq, Ord, Show, Read, Bounded, Enum)
class PP a where pp :: a -> String
instance PP Add where
pp (Mul m) = pp m
pp (a :+ m) = pp a ++ "+" ++ pp m
instance PP Mul where
pp (Term t) = pp t
pp (m :* t) = pp m ++ "*" ++ pp t
instance PP Term where
pp (Number n) = pp n
pp (Parentheses s) = "(" ++ pp s ++ ")"
instance PP Number where
pp (Digit d) = pp d
pp (d ::: n) = pp d ++ pp n
instance PP Digit where pp = show . fromEnum
Now let's define the enumeration order. We'll use two basic combinators, +++
for interleaving two lists (mnemonic: the middle character is a sum, so we're taking elements from either the first argument or the second) and +*+
for the diagonalization (mnemonic: the middle character is a product, so we're taking elements from both the first and second arguments). More information on these in the universe documentation. One invariant we'll maintain is that our lists -- with the exception of digits
-- are always infinite. This will be important later.
ss = adds
adds = (Mul <$> muls ) +++ (uncurry (:+) <$> adds +*+ muls)
muls = (Term <$> terms ) +++ (uncurry (:*) <$> muls +*+ terms)
terms = (Number <$> numbers) +++ (Parentheses <$> ss)
numbers = (Digit <$> digits) ++ interleave [[d ::: n | n <- numbers] | d <- digits]
digits = [D0, D1, D2]
Let's see a few terms:
*Main> mapM_ (putStrLn . pp) (take 15 ss)
0
0+0
0*0
0+0*0
(0)
0+0+0
0*(0)
0+(0)
1
0+0+0*0
0*0*0
0*0+0
(0+0)
0+0*(0)
0*1
Okay, now let's get to the good bit. Let's assume we have two infinite lists a
and b
. There's two things to notice. First, in a +++ b
, all the even indices come from a
, and all the odd indices come from b
. So we can look at the last bit of an index to see which list to look in, and the remaining bits to pick an index in that list. Second, in a +*+ b
, we can use the standard bijection between pairs of numbers and single numbers to translate between indices in the big list and pairs of indices in the a
and b
lists. Nice! Let's get to it. We'll define a class for Godel-able things that can be translated back and forth between numbers -- indices into the infinite list of inhabitants. Later we'll check that this translation matches the enumeration we defined above.
type Nat = Integer -- bear with me here
class Godel a where
to :: a -> Nat
from :: Nat -> a
instance Godel Nat where to = id; from = id
instance (Godel a, Godel b) => Godel (a, b) where
to (m_, n_) = (m + n) * (m + n + 1) `quot` 2 + m where
m = to m_
n = to n_
from p = (from m, from n) where
isqrt = floor . sqrt . fromIntegral
base = (isqrt (1 + 8 * p) - 1) `quot` 2
triangle = base * (base + 1) `quot` 2
m = p - triangle
n = base - m
The instance for pairs here is the standard Cantor diagonal. It's just a bit of algebra: use the triangle numbers to figure out where you're going/coming from. Now building up instances for this class is a breeze. Number
s are just represented in base 3:
-- this instance is a lie! there aren't infinitely many Digits
-- but we'll be careful about how we use it
instance Godel Digit where
to = fromIntegral . fromEnum
from = toEnum . fromIntegral
instance Godel Number where
to (Digit d) = to d
to (d ::: n) = 3 + to d + 3 * to n
from n
| n < 3 = Digit (from n)
| otherwise = let (q, r) = quotRem (n-3) 3 in from r ::: from q
For the remaining three types, we will, as suggested above, check the tag bit to decide which constructor to emit, and use the remaining bits as indices into a diagonalized list. All three instances necessarily look very similar.
instance Godel Term where
to (Number n) = 2 * to n
to (Parentheses s) = 1 + 2 * to s
from n = case quotRem n 2 of
(q, 0) -> Number (from q)
(q, 1) -> Parentheses (from q)
instance Godel Mul where
to (Term t) = 2 * to t
to (m :* t) = 1 + 2 * to (m, t)
from n = case quotRem n 2 of
(q, 0) -> Term (from q)
(q, 1) -> uncurry (:*) (from q)
instance Godel Add where
to (Mul m) = 2 * to m
to (m :+ t) = 1 + 2 * to (m, t)
from n = case quotRem n 2 of
(q, 0) -> Mul (from q)
(q, 1) -> uncurry (:+) (from q)
And that's it! We can now "efficiently" translate back and forth between parse trees and their Godel numbering for this grammar. Moreover, this translation matches the above enumeration, as you can verify:
*Main> map from [0..29] == take 30 ss
True
We did abuse many nice properties of this particular grammar -- non-ambiguity, the fact that almost all the nonterminals had infinitely many derivations -- but variations on this technique can get you quite far, especially if you are not too strict on requiring every number to be associated with something unique.
Also, by the way, you might notice that, except for the instance for (Nat, Nat)
, these Godel numberings are particularly nice in that they look at/produce one bit (or trit) at a time. So you could imagine doing some streaming. But the (Nat, Nat)
one is pretty nasty: you have to know the whole number ahead of time to compute the sqrt
. You actually can turn this into a streaming guy, too, without losing the property of being dense (every Nat
being associated with a unique (Nat, Nat)
), but that's a topic for another answer...