I am starting with 3 large data tables (named A1,A2,A3). Each table has 4 data columns (V1-V4), 1 "Date" column that is constant across all three tables, and thousands of rows.
Here is some dummy data that approximates my tables.
A1.V1<-c(1,2,3,4)
A1.V2<-c(2,4,6,8)
A1.V3<-c(1,3,5,7)
A1.V4<-c(1,2,3,4)
A2.V1<-c(1,2,3,4)
A2.V2<-c(2,4,6,8)
A2.V3<-c(1,3,5,7)
A2.V4<-c(1,2,3,4)
A3.V1<-c(1,2,3,4)
A3.V2<-c(2,4,6,8)
A3.V3<-c(1,3,5,7)
A3.V4<-c(1,2,3,4)
Date<-c(2001,2002,2003,2004)
DF<-data.frame(Date, A1.V1,A1.V2,A1.V3,A1.V4,A2.V1,A2.V2,A2.V3,A2.V4,A3.V1,A3.V2,A3.V3,A3.V4)
So this is what my data frame ends up looking like:
Date A1.V1 A1.V2 A1.V3 A1.V4 A2.V1 A2.V2 A2.V3 A2.V4 A3.V1 A3.V2 A3.V3 A3.V4
1 2001 1 2 1 1 1 2 1 1 1 2 1 1
2 2002 2 4 3 2 2 4 3 2 2 4 3 2
3 2003 3 6 5 3 3 6 5 3 3 6 5 3
4 2004 4 8 7 4 4 8 7 4 4 8 7 4
My goal is to calculate the row mean for each of the matching columns from each data table. So in this instance, I would want row means for all columns ending in V1, all columns ending in V2, all columns ending in V3 and all columns ending in V4.
The end result would look like this
V1 V2 V3 V4
2001 1 2 1 1
2002 2 4 3 2
2003 3 6 5 3
2004 4 8 7 4
So my question is, how to I go about calculating row means based on a partial match in the column name?
Thanks
See Question&Answers more detail:
os